

Al-Azhar International Medical Journal

Volume 5 | Issue 7

Article 22

7-31-2024 Section: Orthopedics

Arthroscopic Versus Mini-Open Repair of Rotator Cuff Tears: Systematic review

Mohamed Mostafa Waheb Elgendy Orthopedic Surgery, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt, 5708715@gmail.com

Ismail Ahmed Hammouda Orthopedic Surgery, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt

Mohamed Gamal Abdelkader Orthopedic Surgery, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt

Follow this and additional works at: https://aimj.researchcommons.org/journal

Part of the Medical Sciences Commons, Obstetrics and Gynecology Commons, and the Surgery Commons

How to Cite This Article

Elgendy, Mohamed Mostafa Waheb; Hammouda, Ismail Ahmed; and Abdelkader, Mohamed Gamal (2024) "Arthroscopic Versus Mini-Open Repair of Rotator Cuff Tears: Systematic review," *Al-Azhar International Medical Journal*: Vol. 5: Iss. 7, Article 22. DOI: https://doi.org/10.58675/2682-339X.2540

This Original Article is brought to you for free and open access by Al-Azhar International Medical Journal. It has been accepted for inclusion in Al-Azhar International Medical Journal by an authorized editor of Al-Azhar International Medical Journal. For more information, please contact dryasserhelmy@gmail.com.

ORIGINAL ARTICLE

Arthroscopic Versus Mini-Open Repair of Rotator Cuff Tears: Systematic review

Mohamed M. W. Elgendy *, Ismail A. Hammouda, Mohamed G. Abdelkader

Department of Orthopedic Surgery, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt

Abstract

Background: The effectiveness of arthroscopic and mini-open rotator cuff surgeries is debated due to their excellent clinical outcomes.

Objective: To assess and estimate the findings of the functional tests. Of mini-open & arthroscopic RCR.

Methods: A comprehensive trial was performed on adult cases aged 47-60 years old with rotator cuff tears (the most affected muscle was supraspinatus), excluding severe or irreparable rips, to compare the clinical results among individuals who underwent all-arthroscopic rotator cuff repair with mini-open rotator cuff repair (RCR) with a mean operative time of 50-70 min. A comprehensive review of pertinent studies published from 2005 to 2023 was performed by systematically searching electronic databases comprising Embase, MEDLINE, Cochrane (CENTRAL), and CINAHL.

Results: Function after three and six months post-operatively was compared in four trials that compared arthroscopic and mini-open approaches. We disclosed a statistically significant alteration in the pooled results concerning clinical outcomes. Rotational Machinations (ROM) across groups (deficient quality, three randomized controlled trials, 462 persons, MD 3.71, 95% CI: 0.14 to 7.28, p = 0.04). Three randomized controlled trials (RCTs) involving 461 participants (MD2.94, 95% CI: -4.55 to 10.44, p=0.44) demonstrated no statistically significant variation in the groups' clinical outcomes related to forward flexion.

Conclusion: At follow-up, differences in discomfort, function, and mobility between arthroscopic and mini-open RCRs are not significant enough to warrant therapeutic consideration, so patient aesthetic priorities, surgeon expertise, and budget should be considered.

Keywords: Arthroscopy; Mini-Open; Rotator Cuff; Supraspinatus

1. Introduction

rotator cuff injury is one of the most

A common reasons people have shoulder discomfort and malfunction.¹

In most cases, individuals who have cuff tears also suffer from chronic "tendinitis" or "bursitis" of the shoulder.²

When deciding whether to operate on a rotator cuff tear, various criteria must be considered, including the person's age, general health, the severity of the tear, the level of discomfort and impairment it has caused, and the severity of the injury. Patients who are young and active and have tears of any size can be considered for surgical repair. There is less to lose by postponing surgical intervention in elderly individuals as well as those with persistent large tears who may find relief from no operative treatment.³

The three most common approaches to repairing a rotator cuff are open, mini-open, and arthroscopic. Postoperative stiffness, repair failure, and deltoid avulsion were consequences of the traditional open repair approach.⁴

Although mini-open and full arthroscopic approaches are less intrusive than open operations and preserve the integrity of the origin of the deltoid function while minimizing the amount of incision required, there are distinct advantages and problems associated with each of these treatments. Repair with entirely arthroscopic surgery is characterized by reduced invasiveness; however, it necessitates more comprehensive training. ⁵

This systematic review aims to analyze the comparative efficacy of arthroscopic rotator cuff surgery with mini-open RCR.

2. Patients and methods

Study design: A comprehensive evaluation was undertaken on adult individuals with rotator cuff injuries, excluding cases with large or irreversible rips. The Preferred Reporting Items for Systematic Reviews & Meta-Analysis (PRISMA) standards also documented the evaluation.

Accepted 21 July 2024. Available online 31 July 2024

https://doi.org/10.58675/2682-339X.2540

2682-339X/© 2024 The author. Published by Al-Azhar University, Faculty of Medicine. This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).

^{*} Corresponding author at: Orthopedic Surgery, Faculty of Medicine for Boys, Al-Azhar University, Cairo, Egypt. E-mail address: 5708715@gmail.com (M. M. W. Elgendy).

Data sources: A comprehensive review of pertinent studies published from 2005 to 2023 was performed by conducting a systematic search – of electronic databases comprising Embase, MEDLINE, the Cochrane Central Register of Controlled Studies (CENTRAL), and CINAHL. Trials issued in the English language were located by doing a search utilizing specific phrases such as 'arthroscopy', 'rotator cuff', 'mini-open', and supraspinatus.

Data Extraction & Strategy: The significant results that were of interest comprised the duration of the surgery, operational results after surgery (UCLA, University of California at Los Angeles; ASES, American Shoulder & Elbow Surgeons; Constant-Murley score), the pain score, the feasible range of motion, & anomalies. The study rejected duplicated articles authored by the same individuals unless they provided longer follow-up studies. Additionally, non-English papers and articles needing more clinical information were also excluded.

Methods of the review

Locating and selecting studies: The abstracts of publications recognized through the aforementioned search method were examined. Publications that seemed to meet the inclusion criteria were then obtained in their entirety. In cases of uncertainty, a second reviewer evaluated the article, and a consensus was established.

Statistical considerations: The results from the trials were aggregated by the systematic review management software and carefully examined to determine if they met the criteria for inclusion. A PRISMA flowchart was generated utilizing the search outcomes, the requirements for being included and the exclusion conditions. ⁶

3. Results

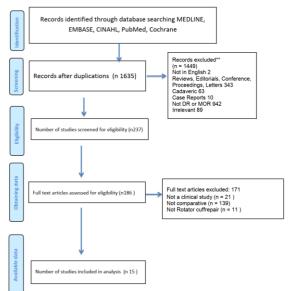


Figure 1. Preferred Reporting Items for Systematic Reviews & Meta-analysis flow diagram

for trial selection.

Table 1.	Type of	included	studies	

AUTHOR	YEAR	TYPE OF STU	DY
MIGLIORINI ET AL ⁷	2023	MA	Mini-open
			Arthroscopic
MONTASER ET AL ⁸	2021	SR	Mini-open
			Arthroscopic
KARAKOC Y, ATALAY ÏB ⁹	2020	Retrospective	Mini-open
			Arthroscopic
MACDERMID ET AL ¹⁰	2019	Prospective	Mini-open
			Arthroscopic
KHOLIEF A ET AL ¹¹	2018	Prospective	Mini-open
	2010		Arthroscopic
VICENTI G ET AL ¹²	2018	retrospective	Mini-open
· · · · · 13	2017	DOT	Arthroscopic
LIU J ¹³	2017	RCT	Mini-open
EDATE OF A DATE OF A DET AL 14	2017		Arthroscopic
FINK BARNES LA ET AL ¹⁴	2017	prospective	Mini-open Arthroscopic
ZHANG Z ¹⁵	2014	prospective	Mini-open
ZHANO Z	2014	prospective	Arthroscopic
VAN DER ZWAAL P ET AL ¹⁶	2013	RCT	Mini-open
VAN DER ZWAALT ET AL	2013	KC1	Arthroscopic
KASTEN P ET AL ¹⁷	2011	prospective	Mini-open
	2011	prospective	Arthroscopic
KÖSE K.Ç ET AL ¹⁸	2008	prospective	Mini-open
		Freebourg	Arthroscopic
PEARSALL AW 19	2007	prospective	Mini-open
			Arthroscopic
VERMA NN ET AL 20	2006	Retrospective	Mini-open
			Arthroscopic
YOUM T ET AL 21	2005	Retrospective	Mini-open
		-	Arthroscopic

A total of fifteen studies evaluating the efficacy of arthroscopy & mini-open surgery for rotator-cuff repair were incorporated. The indication provided was derived from comparative studies that evaluated clinical outcomes or presented subgroup statistics on results of interest in cases with rotator-cuff tear.

Table 2. Patient demographics

AUTHOR	METHODS	NUMBER	AGE	FEMALE
MIGLIORINI ET AL 7	Mini-open	ND	ND	ND
	Arthroscopic	ND	ND	ND
MONTASER ET AL ⁸	Mini-open	ND	ND	ND
	Arthroscopic	ND	ND	ND
KARAKOC Y & ATALAY ÏB ⁹	Mini-open	20	46.9	13
	Arthroscopic	20	52.45	8
MACDERMID ET AL ¹⁰	Mini-open	136	54.6	53
	Arthroscopic	138	55.8	56
KHOLIEF A ET AL ¹¹	Mini-open	15	54.4	5
	Arthroscopic	15	52.5	7
VICENTI G ET AL ¹²	Mini-open	21	60.1	8
	Arthroscopic	20	62.3	11
LIU J ¹³	Mini-open	49	52.5	25
	Arthroscopic	50	53.5	25
FINK BARNES LA ET AL ¹⁴	Mini-open	22	66.8	10
	Arthroscopic	128	64.4	63
ZHANG Z ¹⁵	Mini-open	53	54.2	26
	Arthroscopic	55	53.9	27
VAN DER ZWAAL P ET AL ¹⁶	Mini-open	48	57.8	20
	Arthroscopic	47	57.2	18
KASTEN P ET AL ¹⁷	Mini-open	17	60.1	5
	Arthroscopic	17	60.1	8
KÖSE K.Ç ET AL ¹⁸	Mini-open	25	62	4
	Arthroscopic	25	55	7
PEARSALL AW ¹⁹	Mini-open	25	55	17
20	Arthroscopic	27	58	14
VERMA NN ET AL ²⁰	Mini-open	33	60.73	10
	Arthroscopic	38	59.45	16
YOUM T ET AL ²¹	Mini-open	42	60	ND
	Arthroscopic	42	57.9	ND
There were not	significan	it variat	ions	in

preoperative patient characteristics among the ZHANG Z¹⁵ Mini-open 41/12 Partial thickness (n33) two groups in terms of patient count, gender, as well as age.

Table 3. Fo	llow up peri	od and smo	oking history
AUTHOR	METHODS	FOLLOW-UP	
MIGLIORINI ET AL 7	Mini-open	ND	ND
	Arthroscopic	26.7	ND
MONTASER ET AL ⁸	Mini-open	26.7	ND
	Arthroscopic	26.7	ND
KARAKOC Y & ATALAY ÏB ⁹	Mini-open	25.9	ND
	Arthroscopic	25	ND
MACDERMID ET AL 10	Mini-open	24	ND
	Arthroscopic	24	ND
KHOLIEF A ET AL 11	Mini-open	6	ND
	Arthroscopic	6	ND
VICENTI G ET AL 12	Mini-open	23.5	ND
	Arthroscopic	23.5	ND
LIU J ¹³	Mini-open	16.6	ND
	Arthroscopic	16.6	ND
FINK BARNES LA ET AL 14	Mini-open	24	0
	Arthroscopic	24	4
ZHANG Z ¹⁵	Mini-open	29.4	ND
	Arthroscopic 28.8		ND
VAN DER ZWAAL P ET AL ¹⁶	Mini-open	12 7	
	Arthroscopic	12	12
KASTEN P ET AL 17	Mini-open	6	3
	Arthroscopic	6	2
KÖSE K.Ç ET AL ¹⁸	Mini-open	31	ND
	Arthroscopic	30.6	ND
PEARSALL AW ¹⁹	Mini-open	21.56	ND
	Arthroscopic	31.2	ND
VERMA NN ET AL 20	Mini-open	2.9	7
	Arthroscopic	3.2	3
YOUM T ET AL 21	Mini-open	29	ND
	Arthroscopic	29	ND
Follow up	period &	smoking	history: was

mentioned in Table 3.

ZHANG Z	winn-open	41/12	full thickness(n20)
	Arthroscopic	43/12	Partial thickness (n 32) full thickness (n23)
VAN DER ZWAAL P ET AL ¹⁶	Mini-open	ND	full thickness (n48) small to medium-sized tear
	Arthroscopic	ND	full thickness (n47) small to medium-sized tear
KASTEN P ET AL ¹⁷	Mini-open	12\5	full thickness (n17)
	Arthroscopic	9\8	full thickness (n17)
KÖSE K.Ç ET AL ¹⁸	Mini-open	ND	full thickness (n32) \leq 3cm tear
	Arthroscopic	ND	full thickness (n32) < 3cm tear
PEARSALL AW ¹⁹	Mini-open	ND	Full thickness (n25) Average tear size 2.89cm
	Arthroscopic	ND	Full thickness (n25) Average tear size 2.71cm
VERMA NN ET AL ²⁰	Mini-open	ND	Full thickness (n25) 1 5cm tear
	Arthroscopic	ND	Full thickness (n27) 1 5cm tear
YOUM T ET AL 21	Mini-open	24\9	Full thickness (n33)
	Arthroscopic	23\15	Full thickness (n38)
YOUM T ET AL 21	Mini-open	28\14	Full thickness (n12) small, medium or large
	Arthroscopic	28 \14	Full thickness (n19) small, medium or large
Toor	oizo or tar	no oithor	full thickness porti

Tear size or type either full thickness, partial thickness and side affected were detailed in Table 4 also if there was pathology in tendon.

Table 5. Post-operative result measures by (University of California at Los Angeles & American Shoulder & Elbow Surgeons score) AUTHOR METHODS ASES ASES UCLA UCLA

AUTHOR	METHODS	PRE	POST	PRE	POST
MIGLIORINI ET AL ⁷	Mini-open	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND
MONTASER ET AL 8	Mini-open	36.1	90.7	11.51	26.75
	Arthroscopic	34.2	88.89	11.73	26.9
KARAKOC Y & ATALAY ÏB ⁹	Mini-open	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND
MACDERMID ET AL 10	Mini-open	48.9	92.2	ND	ND
	Arthroscopic	46.5	89.6	ND	ND
KHOLIEF A ET AL 11	Mini-open	ND	91.2	ND	ND
	Arthroscopic	ND	92.6	ND	ND
VICENTI G ET AL ¹²	Mini-open	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND
LIU J ¹³	Mini-open	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND
FINK BARNES LA ET AL 14	Mini-open	ND	91	ND	ND
	Arthroscopic	ND	82.7	ND	ND
ZHANG Z ¹⁵	Mini-open	42.3	89.9	9.94	28.4
	Arthroscopic	39.55	91.34	10.01	30.94
VAN DER ZWAAL P ET AL ¹⁶	Mini-open	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND
KASTEN P ET AL ¹⁷	Mini-open	48.26	86.9	ND	ND
	Arthroscopic	44.3	81	ND	ND
KÖSE K.Ç ET AL ¹⁸	Mini-open	ND	ND	ND	11
	Arthroscopic	ND	ND	ND	11
PEARSALL AW ¹⁹	Mini-open	ND	ND	10.6	28.8
	Arthroscopic	ND	ND	11.2	29.76
VERMA NN ET AL 20	Mini-open	ND	ND	14	27
21	Arthroscopic	ND	ND	14	24
YOUM T ET AL 21	Mini-open	ND	90.2	ND	32.3
	Arthroscopic	ND	91.1	ND	33.2

Table 5. Continued result measures (operative

time & visual analog scale score)

AUTHOR	METHODS	OPERATIVE	VAS(PAIN)	VAS(PAIN)
		TIME\MIN	SCORE	SCORE
			PRE	AFTAR
MIGLIORINI ET AL 7	Mini-open	48.2	6.7	3.2
	Arthroscopic	55.9	6.2	2.4
MONTASER ET AL 8	Mini-open	50.5	6	3
	Arthroscopic	60.9	6.5	2.6
KARAKOC Y & ATALAY ÏB ⁹	Mini-open	ND	6.3	4.2
	Arthroscopic	ND	5.7	3.6
MACDERMID ET AL 10	Mini-open	51.5	ND	ND
	Arthroscopic	66.2	ND	ND
KHOLIEF A ET AL 11	Mini-open	ND	ND	4.6
	Arthroscopic	ND	ND	1.73
VICENTI G ET AL 12	Mini-open	35.4	ND	6.9
	Arthroscopic	55.7	ND	6.1

1	Table 4. Tear characters							
A	AUTHO	R	METHODS	SIDE RT\LT AFFECTED	SIZE OR TYPE OF TEAR			
	GLIORI AL ⁷	NI	Mini-open	ND	ND			
			Arthroscopic		ND			
	ONTASE AL ⁸	ER	Mini-open	ND	ND			
			Arthroscopic		ND			
KA & ÏB	RAKOO ATAI	-	Mini-open	ND	ND			
			Arthroscopic		ND			
	ACDERN AL ¹⁰	MID	Mini-open	ND	full thickness (n 18)			
			Arthroscopic		full thickness (n 27)			
	OLIEF AL ¹¹	А	Mini-open	ND	full thickness (n15) Three individuals had tears that were under a centimeter in size, nine people had tears that were among one and three centimeters in size, as well as three individuals had tears that were among three and five centimeters in size.			
			Arthroscopic	ND	full thickness (n15) Two individuals had tears that were fewer than a centimeter in size, nine people had tears that were among one and three centimeters in size & four individuals had tears that were amongst three and five centimeters in size.			
	CENTI AL ¹²	G	Mini-open	10\11	full thickness (n21)			
51	_		Arthroscopic	13\7	full thickness (n20)			
LIU	J J ¹³		Mini-open	36\13	full thickness (n49)			
			Arthroscopic	31\19	full thickness (n50)			
	JK RNES AL ¹⁴	LA	Mini-open	ND	full thickness (n9),Partial thickness (n3)			
			Arthroscopic	ND	full thickness (n64),Partial			

thickness (n16)

LIU J ¹³	Mini-open	64.7	ND	2.6
	Arthroscopic	71.9	ND	2.9
FINK BARNES LA ET AL 14	Mini-open	ND	ND	0.84
	Arthroscopic	ND	ND	1.54
ZHANG Z ¹⁵	Mini-open	ND	ND	ND
	Arthroscopic	ND	ND	ND
VAN DER ZWAAL P ET AL ¹⁶	Mini-open	ND	7	3.74
	Arthroscopic	ND	6.9	3.28
KASTEN P ET AL 17	Mini-open	ND	ND	4.7
	Arthroscopic	ND	ND	3.3
KÖSE K.Ç ET AL ¹⁸	Mini-open	32	ND	ND
	Arthroscopic	31	ND	ND
PEARSALL AW 19	Mini-open	ND	ND	ND
	Arthroscopic	ND	ND	ND
VERMA NN ET AL 20	Mini-open	ND	7.8	4.8
	Arthroscopic	ND	7.8	3.9
YOUM T ET AL 21	Mini-open	ND	ND	0.4
	Arthroscopic	ND	ND	0.7
Table 6. Co	ntinued	result	measures	(Murley

score)

score)						
AUTHOR	METHODS	MURLEY SCORE PRE	MURLEY SCORE AFTER	FORWARD FLEXION	EXTERNAL ROTATION	INTERNAL ROTATION
MIGLIORINI ET AL ⁷	Mini-open	ND	ND	92.1	57.6	39.1
	Arthroscopic	ND	ND	77.6	60.1	44.3
MONTASER ET AL ⁸	Mini-open	42.3	61.7	ND	ND	ND
	Arthroscopic	42.4	63.5	ND	ND	ND
KARAKOC Y & ATALAY ÏB ⁹	Mini-open	ND	ND	91.7	ND	ND
	Arthroscopic	ND	ND	76.8	ND	ND
MACDERMID ET AL ¹⁰	Mini-open	ND	ND	128.2	58.2	38.2
	Arthroscopic	ND	ND	136.1	62.3	40.1
KHOLIEF A ET AL ¹¹	Mini-open	ND	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND	ND
VICENTI G ET AL ¹²	Mini-open	39.5	75	ND	ND	ND
	Arthroscopic	39	74	ND	ND	ND
LIU J ¹³	Mini-open	ND	50.9	159.1	69.2	ND
	Arthroscopic	ND	52.8	160.7	68.2	ND
FINK BARNES LA ET AL ¹⁴	Mini-open	ND	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND	ND
ZHANG Z ¹⁵	Mini-open	ND	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND	ND
VAN DER ZWAAL P ET AL ¹⁶	Mini-open	42	62	107 ± 38	47 ± 23	ND
	Arthroscopic	42	65.8	107 ± 38	46 ± 22	ND
KASTEN P ET AL 17	Mini-open	ND	20.8	150	70	ND
	Arthroscopic	ND	25.2	170	90	ND
KÖSE K.Ç ET AL ¹⁸	Mini-open	ND	ND	157	126	38
	Arthroscopic	ND	ND	157	125	38
PEARSALL AW ¹⁹	Mini-open	45.6	79.56	ND	ND	ND
	Arthroscopic	46.2	83.56	ND	ND	ND
VERMA NN ET AL ²⁰	Mini-open	ND	ND	ND	ND	ND
	Arthroscopic	ND	ND	ND	ND	ND
YOUM T ET AL ²¹	Mini-open	ND	ND	169.4	70.2	9.2
	Arthroscopic	ND	ND	170.5	68.2	9.8
771			.1		• 1	1

The main outcomes that were considered were the following: pain score, range of motion, details of the operating time, and postoperative functional outcomes (American Shoulder & Elbow Surgeons, University of California at Los Angeles; Constant-Murley score), as illustrated in Table 5.

The arthroscopic group required 60.9 minutes for the procedure, whereas the micro-open group required 50.5 minutes.

With an average preoperative score of 36.1 for the micro-open group & 34.2 for the arthroscopic group, the eight studies that used American shoulder & elbow surgeons indicated that both groups' scores improved after surgery.

7 studies utilized University of California at Los Angeles; the mean preoperative scores for the micro-open group were 11.51 as well as the arthroscopic group were 11.73; postoperative scores for these groups were 26.75 & 26.9, respectively.

In twelve investigations, pain was evaluated via a visual analogue scale (VAS). The mean score before surgery was 6.5 for the micro-open group &

3.0 for the arthroscopic group, respectively.

Seven studies employed the Constant-Murley score; the average score before surgery was 42.3 for the micro-open group & 42.4 for the arthroscopic group; after surgery, the scores rose to 61.7 as well as 63.5, respectively.

4. Discussion

This research examines the impact of arthroscopic vs. mini-open surgery on function at three and six months post-operatively by pooling data from four separate trials. A very low-quality meta-analysis of four randomized controlled trials, counting 495 individuals, found no statistically significant variance in postoperative function among the arthroscopic and mini-open approaches to rotator cuff surgery (95% CI: -0.18 to 0.18, p = 0.98).

al.7 our Migliorini Similar to study, et demonstrated there was no significant distinction between ASR and MOR in terms of the following variables: constant score (P = 0.2), surgical duration (P = 0.05), American shoulder in addition to Elbow Surgeons shoulder (P = 0.5), UC Los Angeles shoulder (P = 0.3), forward flexion (P = 0.3), visual analogue scale (P = 0.2), abduction (P =0.3), internal rotation (P = 0.7), external rotation (P= 0.2), retear (P = 0.9), and adhesive capsis (P = (P = 0.2)). 0.5).

In line with this study, Huang et al.²² allarthroscopic and mini-open RCR operating approaches demonstrated similar clinical findings of function in a review of 18 studies (4 RCTs, 12 retrospective studies, and two prospective studies). The reviewers also found that the two surgical used procedures can be interchangeably individual and rotator depending on tear characteristics.

A very low-quality study with three randomized controlled trials and 254 participants found no statistically significant variance in pain scores at six and twelve months following a rotator cuff repair operation (MD = -0.21, 95% CI: -0.91 to 0.50, p = 0.56).

According to Verma et al.²⁰, the results of the visual analogue scale measure and the ASES score did not change among the intact and failed repair groups, suggesting that significant symptomatic alleviation is possible irrespective of tendon healing.

In line with this study, Huang et al.²² clinical outcomes of pain from all-arthroscopic and miniopen RCR operations are similar, according to a meta-analysis of 18 trials (12 retrospective studies, four randomized controlled trials, and 2 prospective studies). The specifics of the tear dictate the selection of operating performance.

The high rate of rotator cuff can be attributed to various factors, including the extent of the tear, the duration of symptoms before the operation, the degree of cuff degeneration, the technique used for fixation, and the hardware used. Nevertheless, results were not compared based on tear size in the current study.

In contrast, Sakha et al. ²³, Ji et al.²⁴, Nazari et al. ²⁵, Shan et al. ²⁶ and Huang et al. ²² initiated that there is no statistical alteration regarding the range of motion. e.g., external rotation) (p > 0.05). This existing trial exposed that the pooled outcomes presented no significant variance regarding clinical findings regarding forward flexion among groups of deficient quality (461 patients, 3 RCTs, MD). 2.94, 95% CI: -4.55 to 10.44, p = 0.44.

In agreement with this trial, Huang et al.²², Sakha et al. ²³, Nazari et al.²⁵, Shan et al. ²⁶, and Ji et al.²⁴ displayed no significant variance concerning the extent of movement (e.g., forward flexion).

By the time the follow-up duration was three months, the percentage of rotator cuff retear after surgery had increased to 15, 21, 16, 21 percent, as well as 16 percent, respectively, according to the results of a meta-analysis and systematic review published in BMC Musculoskeletal Disorders by Longo et al.²⁷. Certain patient-related factors, for example, bigger rip size, age, & fatty infiltration, as well as non-patient-related ones, for instance, surgery methods, postoperative rehabilitation protocols, & procedures, primarily impact RC healing.

Clinical results of individuals receiving allarthroscopic versus mini-open rotator cuff surgery were evaluated in a systematic analysis of adults with rotator cuff tears other than major or irreparable tears 3. According to the research by Montaser et al.⁸, results were similar for both methods.

Another trial by MacDermid¹⁰ discovered that both groups benefited from the surgery, and the effect sizes were quite considerable; yet, at no point were there any clinically or statistically significant changes in WORC ratings among the groups. Similar trends emerged in the improvement of WORC scores as well as additional outcomes.

4. Conclusion

At the three, six, twelve, 24—and 30-month follow-up, there is no therapeutically meaningful variance amongst arthroscopic and mini-open RCR with respect to function, pain, and mobility. The patient's cosmetic goals, the surgeon's experience, and the patient's financial situation should all be taken into account prior to surgical procedure selection.

Disclosure

The authors have no financial interest to declare in relation to the content of this article.

Authorship

All authors have a substantial contribution to the article

Funding

No Funds : Yes

Conflicts of interest

There are no conflicts of interest.

References

- 1. Deranlot J, Herisson O, Nourissat G, et al. Arthroscopic subacromial spacer implantation in patients with massive irreparable rotator cuff tears: Clinical and radiographic results of 39 retrospectives cases. Arthroscopy 2017; 33: 1639-44.
- 2. Werner MB and Collin P. Correlation between glenoid inclination and critical shoulder angle: A radio-graphic and computed tomography study. J. Shoulder Elbow Surg., 2015; 24 (12): 1948-53.
- 3. Schepsis AA, Busconi B. Disorders of the rotator cuff. Orthopedic surgery essentials. sport medicine 1st ed: Lippincott Williams & Wilkins 2006; 3:178-90.
- 4. Sakoma Y, Sano H. Anatomical and functional segments of the deltoid muscle. J Anatomy 2010; 218:185–190.
- Nho SJ, Shindle MK, Sherman SL, Freedman KB, Lyman S, MacGillivray S. Systematic review of arthroscopic rotator cuff repair and mini-open rotator cuff repair. J Bone Joint Surg Am 2007; 89(Suppl 3):127–136.
- Welch V, Petticrew M, Petkovic J, Moher D, Waters E, White H, Tugwell P, Atun R, Awasthi S, Barbour V, Bhutta ZA. Extending the PRISMA statement to equityfocused systematic reviews (PRISMA-E 2012): explanation and elaboration. Journal of Clinical Epidemiology. 2016; 70:68-89.
- Migliorini F, Maffulli N, Eschweiler J, Schenker H, Tingart M, Betsch M. Arthroscopic versus mini-open rotator cuff repair: A meta-analysis. The Surgeon 2023; 21(1): e1-e12.
- 8. Montaser MG, Esawy OM, El-Razek A. Comparative study between arthroscopic and mini open repair of rotator cuff tear. Benha Journal of Applied Sciences 2021; 6(2), 83-88.
- 9. Karakoc Y, Atalay ÏB. Comparison of mini-open versus all-arthroscopic rotator cuff repair: retrospective analysis of a single center. Pan African Medical Journal. 2020; 37(1).
- 10.MacDermid JC, Bryant D, Holtby R, Razmjou H, Faber K, JOINTS Canada, Balyk R, Boorman R, Sheps D, McCormack R, Athwal G. Arthroscopic versus mini-open rotator cuff repair: a randomized trial and meta-analysis. The American Journal of Sports Medicine. 2021; 49(12):3184-95.
- 11.Kholief A, Khaled SA, Rizk A, et al. Comparative Study between Arthroscopic and Mini Open Rotator Cuff Repair. Med. J. Cairo Univ.2018; 86(5): 2833-2836.
- 12.Vicenti G, Moretti L, Carrozzo M, et al. Evaluation of longterm postoperative outcomes between mini-open and arthroscopic repair for isolated supraspinatus tears: a retrospective analysis. Musculoskelet Surg. 2018; 102(Suppl 1):21-27.
- 13.Liu J, Fan L, Zhu Y, et al. Comparison of clinical outcomes in all-arthroscopic versus mini-open repair of rotator cuff tears. A randomized clinical trial. Medicine .2017; 96:11
- 14. Fink Barnes LA, Kim HM, Caldwell JM, et al. Satisfaction, function and repair integrity after arthroscopic versus mini-open rotator cuff repair. Bone Joint J .2017; 99-B:245-9.
- 15.Zhang Z, Gu B, Zhu W, et al. Arthroscopic versus miniopen rotator cuff repair: a prospective, randomized study with 24-month follow-up. Eur J Orthop Surg Traumatol 2020; 24:845–850.

- 16.Van der Zwaal P, Thomassen BJ, Nieuwenhuijse MJ, Lindenburg R, Swen JW, van Arkel ER. Clinical outcome in all-arthroscopic versus mini-open rotator cuff repair in small to medium-sized tears: a randomized controlled trial in 100 patients with 1-year follow-up. Arthroscopy. 2013; 29(2):266-273.
- 17.Kasten P, Keil C, Grieser T, Raiss P, Streich N, Loew M. Prospective randomised comparison of arthroscopic versus mini-open rotator cuff repair of the supraspinatus tendon. Int Orthop. 2011;35(11):1663-1670.
- 18.Köse KÇ, Tezen E, Cebesoy O, et al. Mini-open versus all-arthroscopic rotator cuff repair: Comparison of the operative costs and the clinical outcomes. Adv Therapy .2008;25, 249–259
- 19.Pearsall AW, Ibrahim KA, Madanagopal SG. The results of arthroscopic versus mini-open repair for rotator cuff tears at mid-term follow-up. Journal of Orthopaedic Surgery and Research 2007, 2:24
- 20.Verma NN, Dunn W, Adler RS, et al. All-arthroscopic versus mini-open rotator cuff repair: a retrospective review with minimum 2-year follow-up. Arthroscopy. 2006; 22(6): 587-594.
- 21.Youm T, Murray DH, Kubiak EN, et al. Arthroscopic versus mini-open rotator cuff repair: a comparison of clinical outcomes and patient satisfaction. J Shoulder Elbow Surg. 2005; 14:455-9.

- 22.Huang H, Grant JA, Miller BS, Mirza FM, Gagnier JJ. A systematic review of the psychometric properties of patient-reported outcome instruments for use in patients with rotator cuff disease. The American journal of sports medicine. 2015; 43(10):2572-82.
- 23.Sakha S, Erdogan S, Shanmugaraj A, Betsch M, Leroux T, Khan M. Update on all-arthroscopic vs. mini-open rotator cuff repair: A systematic review and meta-analysis. Journal of orthopaedics. 2021; 24:254-63.
- 24.Ji X, Bi C, Wang F, Wang Q. Arthroscopic versus miniopen rotator cuff repair: an up-to-date meta-analysis of randomized controlled trials. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2015; 31(1):118-24.
- 25.Nazari G, MacDermid JC, Bryant D, Dewan N, Athwal GS. Effects of arthroscopic vs. mini-open rotator cuff repair on function, pain & range of motion. A systematic review and meta-analysis. PLoS One. 2019 Oct 31;14(10):e0222953.
- 26.Shan L, Fu D, Chen K, Cai Z, Li G. All-arthroscopic versus mini-open repair of small to large sized rotator cuff tears: a meta-analysis of clinical outcomes. PloS one. 2014 Apr 11;9(4):e94421.
- 27.Longo UG, Berton A, Papapietro N, Maffulli N, Denaro V. Epidemiology, genetics and biological factors of rotator cuff tears. Rotator Cuff Tear. 2012; 57:1-9.