Section: Plastic surgery

Temporo Mandibular Joint Disorders in Condylar Fracture Management (Systematic review and Meta-Analysis)

Ahmed Elsayed Abdelmoghny
Resident of plastic and burn surgery, faculty of medicine, Alazhar University,
ahmedelsayed1292@icloud.com

Tarek Mahmoud Youssef Elbanoby
Professor of plastic and burn surgery, Faculty of Medicine, Alazhar University

Mohamed Hosny khalefa Elkon
Assistant Professor of plastic and burn surgery, Faculty of Medicine, Alazhar University

Follow this and additional works at: https://aimj.researchcommons.org/journal

Part of the Medical Sciences Commons, Obstetrics and Gynecology Commons, and the Surgery Commons

How to Cite This Article
Abdelmoghny, Ahmed Elsayed; Elbanoby, Tarek Mahmoud Youssef; and Elkon, Mohamed Hosny khalefa (2023) "Temporo Mandibular Joint Disorders in Condylar Fracture Management (Systematic review and Meta-Analysis)," *Al-Azhar International Medical Journal*: Vol. 4: Iss. 6, Article 25.
DOI: https://doi.org/10.58675/2682-339X.1839

This systematic-review is brought to you for free and open access by Al-Azhar International Medical Journal. It has been accepted for inclusion in Al-Azhar International Medical Journal by an authorized editor of Al-Azhar International Medical Journal. For more information, please contact dryasserhelmy@gmail.com.
Temporo Mandibular Joint Disorders in Condylar Fracture Management (Systematic Review and Meta-analysis)

Ahmed Elsayed Abdelmoghny*, Tarek Mahmoud Youssef Elbanoby, Mohamed Hosny Khalefa Elkon

Plastic and Burn Surgery, Faculty of Medicine, Alazhar University, Egypt

Abstract

Introduction: Condylar fractures represent about 10–40% of all mandibular fractures. Different management options are prescribed.

Methods: Four internet databases (Scopus, Web of Science, Cochrane Library, and PubMed) were searched for relevant published articles in the last five years from 2017 till May 17, 2022 without restrictions. We included all studies whether Cohort investigations, case investigations, or randomized clinical trials. All treatment options for mandible condylar fractures were included like ORIF, closed management, conservative management, osteosynthesis, and fixation with its combination. The assessed outcomes were maximum mouth opening (MMO), lateral excursion, occlusion deranged, pain assessed with the Visual Analogue Scale, complications, and condylar depth distance. Only we managed to perform a single-arm meta-analysis on the MMO after the ORIF procedures by using Open Meta-Analyst.

Results: The eligible studies were 17 studies with a total sample size of 1193 patients. The meta-analysis revealed that the mean effect of ORIF in MMO was 38.441 with a 95% confidence interval ranging from 35.188 to 41.695. ORIF showed better results compared to closed management regarding MMO, decreased protrusive and lateral excursive movements, and pain while ORIF was better than conservative management regarding occlusal derangement. In ORIF procedures, combination with disc repositioning revealed a significant positive in functional outcomes, Inter-maxillary Fixation with an occlusal splint usage was a more superior to open reduction in selected cases.

Conclusion: Several management types of mandibular condylar fractures exist, with various factors being taken into consideration while choosing a certain type for a certain patient.

Keywords: TMJ disorders, Condylar fracture management

1. Introduction

The mandible is one of the commonest fractures (second following nasal bone). Compared to other mandibular anatomical locations, mandibular condyle fractures comprised 10–40% of all mandibular fractures. Mandibular condyle fractures are divided into three categories based on the site of the fracture: condyle head fracture, condyle neck fracture, and subcondylar fracture. Condylar fractures’ proportion is lower in adults than in children. In children, it accounted for 40–67% of mandibular fractures. Mandibular fractures’ treatment involves an optimal environment for bony healing occurrence, such as suitable blood supply, immobilization, as well as fracture segments’ proper alignment. Therefore, in order to allow for primary or secondary bone healing, decrease and fixation are required for the majority of fractures. An exception is a patient with a typical occlusion who has a unilateral subcondylar fracture. Following mandibular condylar fracture treatment, the patient may experience complications including limited mouth opening, persistent pain, and functional loss, such as chewing, biting, yawning.
as well as facial or trigeminal nerve’s damage. The temporomandibular joint (TMJ) may develop fibrous or bony ankylosis as a consequence of the mandibular condylar fracture, significantly impairing its functionality. If the fracture was not discovered, if the patient has severe mandibular condylar head comminuted fractures, if they are immobilized with an extended mandible, or if treatment is delayed, especially in young children, fibrous or bony ankylosis may develop. It has been revealed that, for dislocated condylar process fractures in children and adolescents, both surgical and conservative management could obtain reasonable outcomes. Meanwhile, many doctors prefer surgical treatment. Throughout history, surgeons did not have a clear agreement on condylar fractures line of management. Currently, there are various types of interventions in condylar fracture, and this systematic review aims to provide updated data about available interventions in the past few years.

2. Methods
To conduct our systematic review and meta-analysis, we were constrained by the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria.

2.1. Literature search
Four internet databases (Scopus, Web of Science, Cochrane Library, and PubMed) were searched for relevant published articles in the last five years from the beginning of 2017 till May 17, 2022 without any restrictions. We used the following search strategy: (‘temporomandibular joint’ OR temporomandibular OR TMJ OR ‘temporo-mandibular’ OR ‘temporo-mandibular’) AND (Fracture OR break OR accident OR broken OR Fractures).

2.2. Eligibility criteria
We included all studies whether they were randomized clinical investigations, cohort investigations or case-control investigations which were investigating the outcomes and complications of different management options in mandibular condylar fractures whether they were unilateral or bilateral and displaced or not. All age groups were eligible to be included. The exclusion criteria were studies included patients with pan-facial trauma, studies without sufficient follow-up periods (less than three months), animal investigations, case research, remarks, letters, abstracts from conferences, and reviews.

2.3. Search results screening
The results of searching databases were imported into EndNote X8.0.1. The authors independently screened the titles and abstracts of resulted records. Then, the full texts of remained the studies were screened. In case of any conflicts, the final decision was made by discussion between the authors.

2.4. Data extraction
General data about the included studies were extracted like country, study design, population description, study duration, and follow-up periods. Also, baseline data of included patients were extracted regarding age, Sex, fracture side, and the selected intervention. Finally, the outcomes data were extracted like maximum mouth opening (MMO), lateral excursion, occlusion deranged, and pain assessed with the Visual Analogue Scale (VAS), complications, and condylar depth distance.

2.5. Quality assessment
In order to evaluate the case-control and cohort studies’ quality, we utilized The Newcastle Ottawa Scale. It assesses three essential domains (study groups selection, comparability between them, and outcome or exposure ascertainment. However, in randomized control trials, we used Cochrane’s risk of bias tool which evaluates seven essential domains including random allocation, allocation concealment, study’s participants blinding, outcome assessors blinding, attrition bias, and any detected other bias.

2.6. Qualitative synthesis and statistical analysis
As we included different treatment options in the treating of condylar fractures, it was difficult to perform meta-analyses as a limited number of studies were published for each specific management. Therefore, we qualitatively reviewed each included procedure like ORIF (Internal Fixation and Open Reduction), closed treating, conservative management, osteosynthesis, and fixation with its combination.

Only we managed to perform a single-arm meta-analysis of MMO after the ORIF procedure as it was reported in a sufficient number of studies. The single-arm meta-analysis was performed by Open Meta-Analyzer by using the average of the studies’ values combined with the 95% Confidence Interval. Heterogeneity was estimated by the I squared test and the outcome was considered heterogeneous if
the I² > 50% and the P. value < 0.1 then. In the event that the heterogeneity was clear, a random effect model was then employed.

3. Results

3.1. Data collection

Initially, the systematic search revealed 1185 records. After duplicates removal, the remaining records were 767. A total of 633 entered the title/abstract screening, and 79 were suitable for the full texts one. In the end, a total of 17 articles were included in the systematic review Fig. 1.

3.2. Studies’ summaries & baseline characteristics

All the included studies were published between 2017 and 2022. Of the included studies, five were located in China, three in India, and two in Germany, and France, each. Other countries were Pakistan, Saudi Arabia, Turkey, the United

Fig. 1. PRISMA flow diagram.
Regarding the lateral excursion (mm), months), and 5.25 repositioning (at 3 months).

studies scored 6, except regarding the case-control and prospective cohort, all 9

fragment positional screws, ORIF using small-fragment positional screws, the ORIF compared to 32.39 found 31.27 ± 2.29 of maximal force (Mpa) with ORIF without disc repositioning (at 3 months). 22 In open reduction + mini plates, the paired sample t-test was 63.6±7.02. 23

3.6. Meta-analysis

MMO was measured in mm in 6 studies. A single-arm meta-analysis was done to calculate the mean effect of ORIF different techniques on the MMO. Nine groups from six studies included 244 patients revealed that the mean effect is 38.441 with a 95% Confidence Interval ranging from 35.188 to 41.695.

4. Discussion

Based on our included studies’ results, in high condylar fractures, ORIF with disc repositioning revealed a significant positive effect on TMJ function in the different outcomes, such as the MMO. 14 Meanwhile, IMF with an occlusal splint usage was a more superior to open reduction in selected cases. 23 Even though the Y-shaped plate and TCP showed insignificant differences in various outcomes, as MMO, surgeons preferred the Y-shaped plate over TCP because of its easy maneuverability, particularly in cases of fracture line location being upward towards the condylar neck. 29 Unilateral mandibular condylar fractures’ open treatment showed better functional outcomes than the closed one, mainly regarding the MMO. 13 However, the ORIF group demonstrated better results than the closed group regarding reduced protrusive and lateral excursive movements, as well as TMJ pain; and in occlusal derangement in comparison to the conservative one. On the other hand, the ORIF group had worse outcomes, compared to both the closed and conservative groups, relating MMO. 15 It was said that closed reductions are less expensive for the patient and do not cause vascular envelope stress. On the other hand, it requires intact dentition or some kind of dental records and is connected to a considerable duration of immobility and mouth cavity closure. However, ORIF allows for direct vision, the reduction of broken bone segments, and the restoration of the pre-injury occlusion without requiring full fixation of the mandible and maxilla. As a result, it enables shorter bony, quicker restoration to normal jaw function, improved feeding, and oral cleanliness. 4 Treatment of unilateral mandibular extra-capsular condylar fractures with ORIF demonstrated better clinical and functional outcomes when compared to the closed reduction in terms of occlusion, maximum inter-incisal opening, and lateral deviation during maximum inter-incisal opening and laterotrusion. This was the conclusion
Table 1. A table showing summary of included studies.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Year</th>
<th>Country</th>
<th>Study design</th>
<th>Population description</th>
<th>Study duration</th>
<th>Study center</th>
<th>Follow-up period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asim et al.</td>
<td>2019</td>
<td>Pakistan</td>
<td>RCT</td>
<td>Patients with moderately displaced and or deviated condylar neck or subcondylar fractures</td>
<td>2011–2015</td>
<td>Department of Oral and Maxillofacial Surgery, Armed Forces Institute of Dentistry, Pakistan Rawalpindi</td>
<td>6 months</td>
</tr>
<tr>
<td>Basha et al.,</td>
<td>2020</td>
<td>Saudi Arabia</td>
<td>retrospective study</td>
<td>patients with condylar neck fracture</td>
<td>2014–2018</td>
<td>Aster Sanad Hospital, Exit 9, Al Hamra, Riyadh, Saudi Arabia, Oral & Maxillofacial Surgery.</td>
<td>6 months to 1 year</td>
</tr>
<tr>
<td>Merlet et al.</td>
<td>2018</td>
<td>France</td>
<td>retrospective study</td>
<td>patients with condylar mandibular fracture with articular impact</td>
<td>2009–2015</td>
<td>NR</td>
<td>3 months to 6 years</td>
</tr>
<tr>
<td>Huang et al.,</td>
<td>2020</td>
<td>China</td>
<td>retrospective study</td>
<td>individuals with mandibular condyle fractures in the sagittal plane</td>
<td>2014–2016</td>
<td>the School of Stomatology’s Oral and Maxillofacial Trauma Center at Peking University</td>
<td>15 months</td>
</tr>
<tr>
<td>Kocaaslan et al.,</td>
<td>2022</td>
<td>Turkey</td>
<td>retrospective study</td>
<td>patients with mandibular condyle fracture</td>
<td>2011–2016</td>
<td>The Marmara University School of Medicine’s Department of Plastic, Reconstructive, and Aesthetic Surgery</td>
<td>6 months</td>
</tr>
<tr>
<td>Kolk et al.,</td>
<td>2020</td>
<td>Germany</td>
<td>retrospective study</td>
<td>patients with condylar head fracture mandibular condylar fracture (MCF)</td>
<td>NR</td>
<td>NR</td>
<td>9 months to 6 years</td>
</tr>
<tr>
<td>Kumar et al.,</td>
<td>2021</td>
<td>India</td>
<td>single-centre, prospective, double-arm, parallel-group prospective cohort study</td>
<td>from January 21, 2019, through September 21, 2020</td>
<td>NR</td>
<td>Sri Sai college of Dental Surgery, School and Hospital of Stomatology, Peking University, Department of Oral and Maxillofacial Surgery (6 months from T0); T2, at the end of the follow-up (at least 1 year from T0).</td>
<td>3 months</td>
</tr>
<tr>
<td>Kuntamukkula et al.,</td>
<td>2018</td>
<td>India</td>
<td>prospective cohort study</td>
<td>isolated unilateral condylar fracture</td>
<td>2013–2015</td>
<td>Sri Sai college of Dental Surgery, School and Hospital of Stomatology, Peking University, Department of Oral and Maxillofacial Surgery (6 months from T0); T2, at the end of the follow-up (at least 1 year from T0).</td>
<td></td>
</tr>
<tr>
<td>Liu et al.,</td>
<td>2019</td>
<td>China</td>
<td>retrospectively</td>
<td>sagittal fracture of the mandibular condyle (SFMC)</td>
<td>2014–2019</td>
<td>St. George's Hospital, Blackshaw Road, Tooting, London, Department of Oral and Maxillofacial Surgery</td>
<td></td>
</tr>
<tr>
<td>Madadian et al.,</td>
<td>2020</td>
<td>United Kingdom</td>
<td>retrospectively</td>
<td>mandibular condylar fractures</td>
<td>2005–2018</td>
<td>St. George's Hospital, Blackshaw Road, Tooting, London, Department of Oral and Maxillofacial Surgery</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Year</th>
<th>Country</th>
<th>Study design</th>
<th>Population description</th>
<th>Study duration</th>
<th>Study center</th>
<th>Follow-up period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malinge et al.</td>
<td>2021</td>
<td>France</td>
<td>retrospectively</td>
<td>mandibular condylar fractures with an articular impact.</td>
<td>2002–2018</td>
<td>Nantes University Hospital (France)</td>
<td>Up to 24 months</td>
</tr>
<tr>
<td>Ren et al.</td>
<td>2020</td>
<td>China</td>
<td>retrospective</td>
<td>June 2015 to June 2017</td>
<td>June 2015 to June 2017</td>
<td>Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital</td>
<td>12 months</td>
</tr>
<tr>
<td>Shakya et al.</td>
<td>2021</td>
<td>China</td>
<td>prospective, non-controlled clinical trial</td>
<td>Patients with intra capsular condylar fractures and articular disc displacement patients with temporomandibular joint dysfunction after mandibular fractures</td>
<td>2018–2019</td>
<td>The West China Hospital of Dentistry</td>
<td>6.6 months</td>
</tr>
<tr>
<td>Skrypa et al.</td>
<td>2021</td>
<td>UKRAINE</td>
<td>Prospective study</td>
<td></td>
<td>NR</td>
<td>Chernivtsi Regional Clinical Hospital's surgery dental department</td>
<td>6–12 months</td>
</tr>
<tr>
<td>Smolka et al.</td>
<td>2018</td>
<td>Germany</td>
<td>retrospective study</td>
<td>patients with mandibular condylar head fractures</td>
<td>2009–2016</td>
<td>NR</td>
<td>6 months</td>
</tr>
<tr>
<td>Ceyar et al.</td>
<td>2021</td>
<td>India</td>
<td>Prospective clinical trial</td>
<td>patients with high condylar fracture</td>
<td>NR</td>
<td>Department of Oral and Maxillofacial surgery</td>
<td>3 months</td>
</tr>
<tr>
<td>Xin et al.</td>
<td>2022</td>
<td>China</td>
<td>retrospective cohort</td>
<td>patients with sagittal fracture of mandibular condyle</td>
<td>2011–2021</td>
<td>The Ministry of Education, School, and Hospital of Stomatology’s State Key Laboratory Breeding Base of Basic Stomatology Science and Key Laboratory of Oral Biomedicine</td>
<td>3 months</td>
</tr>
</tbody>
</table>

NR, Not reported.
Table 2. A table showing baseline characteristics of the included population.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Sample size</th>
<th>Dropped patients</th>
<th>Sex</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Asim et al.</td>
<td>80</td>
<td>14</td>
<td>59</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>open ttt = 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>closed ttt = 40</td>
</tr>
<tr>
<td>Basha et al.</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORIF = 10</td>
</tr>
<tr>
<td>Merlet et al.</td>
<td>83</td>
<td>0</td>
<td>58</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORIF, Functional ttt</td>
</tr>
<tr>
<td>Huang et al.</td>
<td>44</td>
<td>0</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal fixation with screws</td>
</tr>
<tr>
<td>Kocaslan et al.</td>
<td>24</td>
<td>0</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMF only = 8, IMF + splint = 11, open reduction + mini plates = 5</td>
</tr>
<tr>
<td>Kok et al.</td>
<td>80</td>
<td>0</td>
<td>47</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CR-MMF = 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORIF + SFS = 54</td>
</tr>
<tr>
<td>Kumar et al.</td>
<td>20</td>
<td>0</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trapezoidal Condylar Plate, Y-Shaped Plate</td>
</tr>
<tr>
<td>Kuntamukkula et al.</td>
<td>30</td>
<td>0</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Operated (ORIF)</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>20</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>displaced disc status as complete reduction (DCR), incomplete reduction (DICR), non-fractured (NF)</td>
</tr>
<tr>
<td>Madadian et al.</td>
<td>358</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conservative, closed, ORIF</td>
</tr>
<tr>
<td>Malinge et al.</td>
<td>108</td>
<td>0</td>
<td>59</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Functional treatment</td>
</tr>
<tr>
<td>Ren et al.</td>
<td>56</td>
<td>0</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surgical, conservative</td>
</tr>
<tr>
<td>Shaky et al.</td>
<td>21</td>
<td>0</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORIF with 1 minisuture anchor = 14, and with 2 minisuture anchor = 17</td>
</tr>
<tr>
<td>Smolka et al.</td>
<td>48</td>
<td>0</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORIF using small-fragment positional screws</td>
</tr>
<tr>
<td>Ceyar et al.</td>
<td>24</td>
<td>0</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ORIF with disc repositioning</td>
</tr>
<tr>
<td>Xin et al.</td>
<td>95</td>
<td>0</td>
<td>64</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>resorbable-screw osteosynthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>titanium-screw osteosynthesis</td>
</tr>
</tbody>
</table>

NR, Not reported.

Fig. 2. Risk of bias graph.
of a previous meta-analysis comparing open with closed reductions. Meanwhile, no significant variation was found between them regarding protrusion and TMJ pain. However, cross-sectional research of 12,303 patients found that ORIF had increased risks of a lengthier hospital stay, higher overall medical costs, and hematoma formation compared to close reduction, but a decreased risk of wound infections. IMF is one of the logical choices for people who are more likely to have problems from ORIF. IMF may not be the best choice for long-term results, however, since there is a significant overlap between this at-risk group for problems and the at-risk group for noncompliance. The various options for treatment are determined by the clinical symptoms and diagnostic results of the fracture, such as unilateral or bilateral fracture, displacement, dislocation, size, and position of the condylar segment, dental malocclusion, mandibular dysfunction, and the patient's readiness for surgical intervention. The patient's age, general health, and the surgeon's expertise are additional crucial elements influencing the ultimate decision. Future RCTs with large sample sizes and data eligible for meta-analysis are highly recommended to obtain more conclusive conclusions about the preferred intervention in different selected cases. The strengths include our strict following of the PRISMA guidelines, and the inclusion of various intervention types. On the other hand, the limitations include the small sample size, and that the majority of included studies were retrospective ones.

4.1. Conclusion

Several management types of mandibular condylar fractures exist, with various factors being taken into consideration while choosing a certain type for a certain patient. High condylar fractures, ORIF with disc repositioning revealed a significant positive effect on TMJ function while IMF with an occlusal splint usage was a more superior to open reduction in selected cases.

Disclosure

The authors have no financial interest to declare in relation to the content of this article.

Authorship

All authors have a substantial contribution to the article.

Sources of funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of Interest

There are no conflicts of interest.

References

