Role of ADC Mapping in the Assessment of Therapeutic Response of Hepatocellular Carcinoma in Patients with Post-trans-catheter Arterial Chemoembolization

Islam Beriam
radiology azhar university, islam1010beram@gmail.com

mostafa sonbol
prof of radiology azhar university, mostfasonbol@gmail.com

ahmed zidan
prof radiology azhar university, drahmedzidan@gmail.com

How to Cite This Article
Beriam, Islam; sonbol, mostafa; and zidan, ahmed (2022) "Role of ADC Mapping in the Assessment of Therapeutic Response of Hepatocellular Carcinoma in Patients with Post-trans-catheter Arterial Chemoembolization," *Al-Azhar International Medical Journal*: Vol. 3: Iss. 10, Article 21.
DOI: https://doi.org/10.21608/aimj.2022.126598.1873
Role of ADC Mapping in the Assessment of Therapeutic Response of Hepatocellular Carcinoma in Patients with Post-trans-catheter Arterial Chemoembolization

Islam Mahmoud Mohamed 1, M.B.B.Ch; Mostafa Fadel Mohamed 2, MD and Ahmed Mohammed Zidan 2, MD.

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is more common in persons with chronic liver disease and cirrhosis. The apparent diffusion coefficient (ADC) has the ability to detect tumour response to treatment weeks before morphological alterations are evident.

Aim of The Work: To compare the response to therapy of HCC cases after trans-arterial chemoembolization using the ADC mapping MRI approach to the dynamic contrast study (DCE MRI).

Patients and Methods: The current study involved 30 patients who underwent dynamic MRI with ADC mapping technique before and after TACE. All patients had been subjected to clinical assessment, laboratory investigations (AFP, liver functions, serum albumin bilirubin, coagulation profile, CBC) and ultrasound to exclude ascites. All cases underwent baseline and follow-up MR imaging.

Results: DCE-MRI and DWI/ADC assessments regarding active lesions showed comparable sensitivity, specificity, PPV, NPV and accuracy in HCC patients; without significance (p > 0.05) (Table 3). Table (4) shows a good agreement between dynamic-MRI and DWI/ADC evaluation of reactivity between HCC cases. DWI/ADC value at a cutoff point (≤2.17) can identify cases with remnant active pathology, with good (83.3%) accuracy, sensitivity= 87.5% and specificity= 81.8% (p < 0.001).

Conclusion: Authors conclude that dynamic MRI is useful and the standard in identifying relapsed pathology but, this value is enhanced by DWI/ADC protocol which will significantly be of great value in increasing the confidence in our diagnosis.

Keywords: Axillary lymph node US; elastography; Breast US.

INTRODUCTION

Hepatocellular carcinoma (HCC) is more frequent in individuals with chronic liver diseases and cirrhosis. HCC is currently the third major etiology of cancer mortality globally, with over 500,000 persons suffering. As regard to the Milan criteria, liver transplantation is still the best choice for individuals with HCC. However, there is a shortage of high-quality dead donor organs. As a result, different therapies such as resection, radiofrequency ablation (RFA), and may be systemic treatment are required.

Transcatheter arterial chemoembolization (TACE) is the most often used treatment. TACE is done by cannulation of the tumor's feeding artery and gives high local dosage of chemotherapy such as doxorubicin, cisplatin, or mitomycin C. To avoid systemic toxicity, the feeding artery is blocked with gel foam or coils.

Dynamic contrast-enhanced MRI (DCE MRI) has the potential to be a valuable radiological indicator, particularly in the identification of active tumour cells the distinction of necrosis from active tumour, and prediction of therapeutic efficacy. Diffusion-weighted imaging (DWI) is the primary method for determining tumour cells and cell membrane stability. As a result, it may be susceptible to differences in the tumour microenvironment after therapy. Also, it may be assessed quantitatively by computation of the apparent diffusion coefficient (ADC).

ADC may be useful in predicting tumour response to therapy weeks earlier to morphological alteration. It assesses the movement of water inside tissues. Active tumours have a high cellularity, and intact cell membrane, which inhibits water molecule movement and leads in a relatively reduction of ADC. However, cellular necrosis enhances membrane permeability, allowing water molecules to flow easily and resulting in a relative rise in ADC. It has emerged as an intriguing indicator of tumour response to treatment.

Our rational was to evaluate the response to therapy of HCC cases after trans-arterial chemoembolization...
using the ADC mapping MRI approach to the dynamic contrast study (DCE MRI).

PATIENTS AND METHODS

A prospective study carried out at El Maadi Armed Forces Hospital, Radiology Department during the period from 1 May 2020 to 1 October 2021. The current study involved 30 patients who underwent dynamic MRI with ADC mapping technique before and after TACE. The study was accepted by Al-Azhar University's Ethics Board, and each subject signed an informed written permission form.

Patients with unresectable hepatic tumor, its size <50% of total liver size, patent portal vein, serum bilirubin < 1.7, INR <1.5 and serum albumin ≥2.8 were enrolled in this study. However, subjects with any contraindication to contrast media, e.g. kidney failure and allergy, contraindication to MRI, e.g. claustrophobia, heart prosthesis and pacemakers and metallic implants and plates, extra hepatic metastases, tumor size > 50% of total liver size, portal vein thrombosis and poor liver function were excluded from the study.

Clinical evaluations had been performed to all participants., laboratory investigations (AFP, liver functions, serum albumin bilirubin, coagulation profile, CBC) and ultrasound to exclude ascites.

All participants underwent an initial and follow-up MRI using 3 Tesla (GE Discovery 750) MRI machine. Abdominal coil was used with respiratory triggering. The imaging protocol included the following:

Pre contrast MR imaging before the diffusion weighted examination:

T1-weighted image with the following parameters: (TR = 400ms, TE = 20ms, 385 x 385mm field of view (FOV), 256 x 256 matrix, section thickness 5-7mm).

T2-weighted image with the following parameters: (TR = 3000ms, TE = 90, 385 x 385mm FOV, 256 x 256 matrix and section thickness: 5-7mm).

STIR (short time inversion recovery) was done using the following parameters: (TR= 418ms, TE = 80, TI = 140ms, 385 x 385 FOV, 256 x 256 matrix and section thickness 5-7mm).

Dynamic study: A bolus injection of 0.05mmol of gadobenate dimeglumine per kilogram of body weight followed by 20ml of saline flush at a rate of 2mL/s by using a power injector.

Three c0onsecutive p0stcontrast imaging were obtained employing a dual (early and late) hepatic arterial phase, f0110wed by p0rtal and delayed phases. Early and late arterial phases were done without interruption, with a set delay of 15 sec0nds f0rt1owing the start of c0ntrast material injection and within a breath10d 0f 20 sec0nds. The p0rtal ven0us phase was obtained 30 sec0nds after the late arterial phase ended, and the delayed phase was obtained 175 sec0nds after the c0ntrast material was administered.

Diffusion weighted images: Function1a DWI was performed using single echo b0-planar imaging during one or more breath holds with tw0b-values (500, 800mm2/s) applied in the z direction. These b-values were chosen to overcome the effect of capillary perfusion and water diffusion in extracellular extra vascular space. ADC maps were reconstructed from each set of DWIs acquired at each slice p0sit10n.

Statistical analysis:

All data analyzed using statistical package for social sciences (SPSS) version 22 (SPSS Inc, Chicago, USA). For qualitative data, frequency and percent distributions was calculated. For quantitative data, mean, standard deviation (SD) was calculated. Significance was defined as P value < 0.05. The following tests were used; Student T test, Mann-Whitney U test, Chi- Square test and McNemar’s test.

RESULTS

This study involved 30 participants with HCCs who subjected to trans-catheter arterial chemoembolization. Their mean age was 65.57± 6.21 years and ranged from 41 to 74 years. 25 (83.3%) patients were more than 60 years while 5 (16.7%) were less than 60 years. Male predominance was noticed in our study as male represented 96.7% cases while there was one female (3.3%). 18 (60%) patients live in rural region while 12 (40%) patients live in urban region. Concerning tumor size, the size ranged from 1.3*1.2 cm to 10.0*7.6 cm with mean ±SD was 4.01±3.07) ± (2.32±1.71) cm. The AFP ranged from 2.70 to 8299 with mean ±SD was 421.41 ± 281.96.

Regarding dynamic MRI, there was 10 (33.3%) cases showed positive changes while 20 (66.7%) cases showed negative changes. As regards to DWI/ADC, there was 8 (26.7%) cases showed positive changes while 22 (73.3%) cases showed negative changes. The mean (± SD) ADC value was 2.15± 0.124 × 10-3 mm2/s. 2 (6.7%) cases had mean ADC value < 1.2 × 10-3 mm2/s while 28 (93.3%) cases had mean ADC value > 1.2 × 10-3 mm2/s (Table 1).

The patients were classified according to active lesions into 2 independent groups; active group (10 patients) and inactive group (20 patients). ADC value in active group was lower than inactive group with high significance (p=0.001) (Table 2). DCE-MRI and DWI/ADC assessments regarding active lesions showed; comparable sensitivity, specificity, PPV, NPV and accuracy in HCC patients; with no significance (p >0.05) (Table 3). Table (4) shows a good agreement between dynamic-MRI and DWI/ADC evaluation of reactivity between HCC cases (kappa =0.684).

By using ROC-curve analysis, Dynamic-MRI can detect cases with residual active pathology, with excellent (96.7%) accuracy, sensitivity= 100% and specificity= 95% (p <0.001). DWI/ADC value at a cutoff point (≥2.17) can detect cases with residual active pathology, with good (83.3%) accuracy, sensitivity= 87.5% and specificity= 81.8% (p <0.001) (Figure 1).
Table 1: Dynamic MRI, DWI/ADC characteristics in the studied HCC patients:

<table>
<thead>
<tr>
<th>Activity by Dynamic MRI</th>
<th>Negative</th>
<th>%</th>
<th>Positive</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>66.7%</td>
<td>10</td>
<td>33.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity by DWI/ADC</th>
<th>Negative</th>
<th>%</th>
<th>Positive</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>73.3%</td>
<td>8</td>
<td>26.7%</td>
</tr>
</tbody>
</table>

Activity by DWI/ADC

<table>
<thead>
<tr>
<th>ADC Value: Mean± SD</th>
<th>n</th>
<th>%</th>
<th>n</th>
<th>%</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.2 × 10⁻³ mm²/s²</td>
<td>2</td>
<td>6.7%</td>
<td>22</td>
<td>73.3%</td>
<td><0.001**</td>
</tr>
<tr>
<td>≥ 1.2 × 10⁻³ mm²/s²</td>
<td>28</td>
<td>93.3%</td>
<td>10</td>
<td>33.3%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Comparison between the two groups as per ADC value

<table>
<thead>
<tr>
<th>Variables</th>
<th>Dynamic-MRI assessment</th>
<th>DWI/ADC assessment</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (TPR) (true positive rate)</td>
<td>100.0%</td>
<td>87.50%</td>
<td>0.156</td>
</tr>
<tr>
<td>Specificity (TNR) (true negative rate)</td>
<td>95.0%</td>
<td>81.82%</td>
<td>0.235</td>
</tr>
<tr>
<td>Positive predictive value (PPV)</td>
<td>90.91%</td>
<td>63.64%</td>
<td>0.089</td>
</tr>
<tr>
<td>Negative predictive value (NPV)</td>
<td>100.0%</td>
<td>94.74%</td>
<td>0.235</td>
</tr>
<tr>
<td>Accuracy (AUC)</td>
<td>96.67%</td>
<td>83.33%</td>
<td>0.423</td>
</tr>
</tbody>
</table>

McNemar’s test.

Table 3: Validity of DCE MRI & and DWI/ADC in detecting active lesions.

<table>
<thead>
<tr>
<th>DWI/ADC</th>
<th>Total</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>12 (33.3%)</td>
<td>20 (66.7%)</td>
</tr>
</tbody>
</table>

Table 4: An agreement between Dynamic-MRI and DWI/ADC in detecting active lesions.

Fig. 1: ROC curve of DCE MRI and dynamic MRI in detecting treatment response/residual tumor.
Fig. 2: 68 years old female patient with liver cirrhosis and HCV + VE underwent TACE of left hepatic lobe lesion segments II focal lesion. Dynamic MRI with diffusion weighted study and ADC mapping was done 3 months after embolization. (A) Axial arterial phase image showing no enhancement (B) Axial delayed phase image showing delayed washout, (C) the lesion showing no restricted diffusion on (DWI), (D) ADC mapping and ADC value decreased 1.2×10^{-3} denoting well ablated.
Fig. 2: 51 years old male patient with liver cirrhosis and HCV + VE underwent TACE of right hepatic lobe lesion segments VI focal lesion. Dynamic MRI with diffusion weighted study and ADC mapping was done 3 months after embolization. (A) Axial arterial phase image showing early peripheral enhancement and (B) Axial delayed phase image showing delayed washout, (C) the lesion showing partially restricted diffusion on (DWI). (D) ADC mapping and ADC value 1.5×10^{-3} denoting residual activity.

Fig. 4: 59 years old male patient with liver cirrhosis and HCV + VE underwent TACE of right hepatic lobe lesion segments VII focal lesion. Dynamic MRI with diffusion weighted study and ADC mapping was done 3 months after embolization. (A) Axial arterial phase image showing early enhancement and (B) Axial delayed phase image showing washout, (C) the lesion showing partially restricted diffusion on (DWI). (D) ADC mapping and ADC value 1.3×10^{-3} denoting recurrent activity.
DISCUSSION

Diffusion-weighted imaging (DWI) may be vulnerable to modifications in the tumour microenvironment after therapy, that could be quantified for the computation of the ADC. DWI may indicate the extent of tumour necrosis in huge HCC after TACE, and the data can guide patient therapy. The ADC value can predict the survival of HCC cases after TACE.9

The present study showed that as regard MRI, DWI/ADC characteristics in the studied HCC patients. Regarding dynamic MRI, there was 10 (33.3%) cases showed positive changes while 20 (66.7%) cases showed negative changes. As regards to DWI/ADC, there was 8 (26.7%) cases showed positive changes while 22 (73.3%) cases showed negative changes. The mean (± SD) ADC value was 2.15± 0.124 × 10-3 mm2/s. 2 (6.7%) cases had mean ADC value < 1.2 × 10-3 mm2/s while 28 (93.3%) cases had mean ADC value > 1.2 × 10-3 mm2/s. While, in the study of ZENAT et al.9 the mean (± SD) ADC value was 1.47±0.37 (x103 mm2/sec).

In the study of Fantawy & Mohamed, 10 that involved 40 HCCs evaluated by DWI and ADC value, thirty-two HCCs responded to treatment. With b value 500, the mean ADC value was comparable between responding and non-responding lesions. While, with b value 1000, there was a significance with higher mean ADC values in responding lesions than in non-responding (P=0.03).

Our results showed that DCE-MRI and DWI/ADC assessments regarding active lesions showed comparable sensitivity, specificity, PPV, NPV and accuracy in HCC patients, without significance. There was a good agreement between dynamic-MRI and DWI/ADC evaluation of reactivity between HCC cases (kappa =0.684). By using ROC-curve analysis, Dynamic-MRI can detect cases with residual active pathology, with excellent (96.7%) accuracy, sensitivity = 100% and specificity = 95% (p<0.001). DWI/ADC value at a cutoff point (≥2.17) can detect cases with residual active pathology, with good (83.3%) accuracy, sensitivity = 87.5% and specificity = 81.8% (P=0.001).

Our findings similar to study of ZENAT et al.9 as they discovered a moderate agreement between DCE-MRI and DWI/ADC reactivity evaluations in HCC cases. DCE-MRI identified patients with residual active pathology with excellent (92%) accuracy, sensitivity (92%) and specificity (91%) by ROC curve (p=0.01). DWI/ADC value at a cut-off point (1.33) identified cases with residual active pathology with good (84%) accuracy, sensitivity= 84%, and specificity= 83% (p=0.0001).

Similarly, Goshimaet al.11 who discovered that DWI had a 100% sensitivity, a 65.5% specificity, a 67.7% PPV, a 100% NPV, and a total agreement of 80%.

In the study of Abdelrahman et al.12 The qualitative DWI had a sensitivity and specificity of 77.8% and 75% for detecting remnant viable HCC after TACE, respectively. The quantitative ADC value had a higher sensitivity than the DWI for detecting remnant HCC, with a sensitivity and specificity of 81.5% and 75%, respectively, at an ADC cut-off value of 3.12 103 mm2/s. Regarding to logistic regression analysis, the optimal ADC value 1.35 103 mm2/s was the best imaging tool for detection of active HCC with 88.6% accuracy.

Ebede et al.13 recorded a higher cut-off value of 1.38×10-3 mm2/s with a sensitivity of 76.5% and a specificity of 65.2% at a cut-off value of 1.38×10-3 mm2/s. DWI had an 82.3% sensitivity and 73.9% specificity for detecting remnant active HCC after TACE.

Saleh et al.14 noticed a similar finding, revealing an accuracy of 82.5% at a cut-off value of 1.35×10-3 mm2/s. They found variant diagnostic values, with a reduced sensitivity of 52.6% and a raised specificity of 90.5%; however, their study included 1R-TR non-evaluable HCC, which was not included in our study.

In meta-analysis conducted by Liu et al.15 DWI had a pooled sensitivity, specificity, and AUC value of 85%, 83%, and 0.90, respectively in identifying remnant or relapsed HCCs following TACE and lower than that of necrotic tumours (P<0.01).

CONCLUSION

Authors conclude that dynamic MRI is useful and the standard in identifying relapsed pathology, but this value is enhanced by DWI/ADC protocol which will significantly be of great value in increasing the confidence in our diagnosis.

Conflict of interest: none

REFERENCES

