Assessment of the Effectiveness of Toxoplasma Surface Antigen Grade I for Diagnosis of Human Toxoplasma gondii

Abdelrahman Elmowafy
Biology, Science, Al-Azhar, Cairo, Egypt, abdorme81.ae@gmail.com

Adham Sadek
Biology, Science, Al-Azhar University, Cairo, Egypt, adhamsadiq@gmail.com

Alaa Samn
Biology, Science, Al-Azhar University, Cairo, Egypt, prof2000bio@gmail.com

Hanan Hamza
Department of Biology, College of Science, Jouf Univ., P.O. Box:2014, Sakaka, Saudi Arabia Department of Zoology, Faculty of Science, Girls Branch Al-Azhar University, Cairo, Egypt, dr.h.taher@gmail.com

Ibrahim Aly
Head of Parasitology Dep. Theodor Bilharz Research Inst., ibrahimshalash@yahoo.com

Follow this and additional works at: https://aimj.researchcommons.org/journal

Part of the Medical Sciences Commons, Obstetrics and Gynecology Commons, and the Surgery Commons

How to Cite This Article

Elmowafy, Abdelrahman; Sadek, Adham; Samn, Alaa; Hamza, Hanan; and Aly, Ibrahim (2020) "Assessment of the Effectiveness of Toxoplasma Surface Antigen Grade I for Diagnosis of Human Toxoplasma gondii," *Al-Azhar International Medical Journal*: Vol. 1: Iss. 12, Article 15.

DOI: https://doi.org/10.21608/aimj.2021.42859.1321

This Original Article is brought to you for free and open access by Al-Azhar International Medical Journal. It has been accepted for inclusion in Al-Azhar International Medical Journal by an authorized editor of Al-Azhar International Medical Journal. For more information, please contact dryasserhelmy@gmail.com.
Assessment of the Effectiveness of Toxoplasma Surface Antigen Grade I for Diagnosis of Human Toxoplasma gondii

Abdelrahman Ramzy Elmowafy1, MSc, Adham Gamal Sadek1, PhD, Alaa Abdelaziz Saman1, PhD, Hanan Taher2, PhD and Ibrahim Rabae3, MD

ABSTRACT

Background: Toxoplasmosis represents a neglected equatorial poverty disorder triggered by an intracellular mandatory protozoan parasite, known as Toxoplasma gondii.

Aim of the work: The purpose of this study was to assess the Effectiveness of Toxoplasma Surface Antigen Grade I for diagnosis of human Toxoplasma gondii in Egypt by Sandwich ELISA Technique.

Subjects and Methods: This study was conducted on 94 individuals, divided into 3 categories, category I: Toxoplasma gondii, category II: Other parasites, it encompassed 10 infected patients that have E. histolytica and 14 infected with G. lamblia, and category III: Healthy control group.

Results: The cutoff value was 0.233 when detecting Toxoplasma (SAG1). The serum findings appear positive in 43 cases (86 percent) of category I, whilst 7 cases (14 percent) appear negative. In category II (patient with different parasites): 10 positive cases of Entamoeba histolytica have been confirmed, while the other 14 cases were positive with G. lamblia. All healthy control cases (category III) were negative. The sensitivity was 86% However; the specificity was observed at 81.81%.

Conclusion: From the obtained results, we can conclude that: to evaluate the different immunodiagnostic antigens detection assays, choice, and purification of the suitable antigen, accompanied by the manufacture and purification of its particular antibodies, are mandatory. The employment of rabbit anti-Toxoplasma gondii IgG polyclonal antibodies in sandwich ELISA techniques for the identification of SAG1 in human serum provides a sensitive and specific tool for immunodiagnosis in human toxoplasmosis.

Keywords: Toxoplasmosis; Diagnosis; Sandwich ELISA; Surface antigen

INTRODUCTION

Toxoplasma gondii (T. gondii), known as the intracellular parasitic coccidia that infects both animals and human beings.1 It was mentioned in 1908 in desert rodent Ctenodactylus gundi by Manceaux and Nicolle, and in laboratory rabbit by Splendore. Unlike Plasmodium, that has been documented around 30 years earlier, it was indeed a comparatively benign parasite.2 It is an apicomplexan species among zoonotic parasites with species as final and intermediate hosts as well, although vertebrates with warm blood are intermediate hosts, even bird species. The disease occurs when tissue cysts or mature oocysts are swallowed, shed, and sporulated in the ecosystem by the final hosts. T. gondii is global in distribution and is one of the most predominant human parasites.3 Toxoplasmosis differs from asymptomatic disorder, a self-limiting disorder to a deadly illness, viewed in a weakened patient with historical factors that affect the end-result for infection.4 T. gondii surface is considered the first part to reach host cells and the parasite's surface antigen is considered to be the main target of the study.5 There are various serological techniques for detecting humoral antibodies, including Sabin-Feldman dye method, latex agglutination method, indirect fluorescent antibody test (IFAT), indirect hemagglutination method, direct agglutination method and enzyme-linked immune sorbent assay (ELISA).6 Serum antigen detection assay is typically performed by ELISA sandwich.7 It
has more than 1000 proteins and glycoproteins which form a wide range of antigens. These antigens are complex and originate from the different structures of the parasite which include: surface (membrane) antigens, stage-specific antigens (specific to the *Toxoplasma gondii* tachyzoite, bradyzoite, and oocysts/sporozoite stage) and circulating antigens which are excretion, secretion and lyases products of the parasite that circulate in the blood during early acute infection. In the superfamilly of surface antigens, five proteins are found in *T. gondii*, including p23, p35, SAG1, SAG2, and SAG3. This research aimed to evaluate the efficacy of *Toxoplasma* Surface Antigen Grade I (SAG1) for diagnosis of human toxoplasmosis in Egypt by Sandwich ELISA Technique.

PATIENTS AND METHODS

Patients

Collection of samples: Serum samples were collected from Egyptian patients during the period from 8 / 2016 to 7 / 2017 from Cairo lab, which is a private lab after ethical approval. The practical part of this work was performed in the Parasitology Department at Theodor Bilharz Research Institute (TBRI).

Animals and Parasites

Animals: White male rabbit, about 1.5 kilograms (kg) in weight, at the age of two months, bought from rabbit research unit (RRU), Faculty of Agriculture, University of Cairo. Before the beginning of the experimental studies, It was examined and tested for being free of parasitic infections, and utilized in the manufacturing of antibodies. It had been maintained for 4 weeks (experimental duration) in line with normal laboratory condition at 21 °C until tested.

Parasites: *Toxoplasma* tachyzoites were extracted from the peritoneal fluid of mice and were transferred in phosphate buffer saline (PBS) to our laboratory in TBRI.

Study population: This research was carried out on 94 individuals; the participants grouping was performed as follows:

Category I: 50 Toxoplasma gondii-positive patients based on the existence of antibodies in their serum.

Category II: 24 patients carrying other parasites (G. lamblia & E. histolytica).

Category III: 20 seemingly stable toxoplasmosis-free individuals and other parasitic diseases acted like negative control.

The sera from the 3 groups were isolated and kept at -20°C until tested.

Preparation of Toxoplasma antigen: Toxoplasma tachyzoites underwent 3 freezing and thawing periods. Preparation of Toxoplasma antigen was done according to Brooks et al. and Parvar et al.

Purification of the target antigen

Purification of the target antigen by DEAE-Sephadex A-50 ion-exchange chromatography.

Purification by chromatography with gel filtration by Sephadex G-50.

Electrophoresis of sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE): Migration of proteins in electrophoresis depends primarily on the size, charge, and shape of the molecules.

Assessment of *Toxoplasma* antigen reactivity via ELISA Assay (indirect): This technique, with several changes of the initial Engvall and Perlmann methods, was used. Rabbit immunization for producing polyclonal antibodies: Before injection, blood samples were obtained from the healthy rabbit, tested with ELISA for *T. gondii* Abs. as mentioned by Gubadia and Fagbemi. Rabbit anti-*T. gondii* serum was obtained by immunizing of rabbit with *Toxoplasm* antigen, during the entire process of immunization, 1 mg of *Toxoplasma* antigen was given to the rabbit. Rabbit received priming dosage intramuscular injection (i.m.) at four sites, 1 mg *Toxoplasma* antigen in 700µ combined with 700µ complete Freund's adjuvant 1:1 (CFA, Sigma). Three enhancement doses had been administered, each with 0.5 mg of antigen solubilized around the same level of incomplete Freund's adjuvant (IFA, Sigma). First enhancing had been 2 wks. after the priming dose. Doses had been administered during weekly periods after the boost, according to Fagbemi and Guobadia. Blood samples had been obtained before any dose of immunization was injected to measure the antibody (Ab) by indirect ELISA. Rabbit's serum which contains anti-*Toxoplasma* polyclonal antibodies (pAb) IgG was separated and maintained at 20°C. Purification of anti-*Toxoplasma* rabbit serum:

Purification by 50% ammonium sulfate precipitation: In solutions, proteins create bonds of hydrogen with water via its revealed polar, ionic groups. Such groups are competing with proteins to bind with water when a high concentration of extremely-loaded ions, for example, ammonium or sulfate is placed. This eliminates the molecules of water from proteins, reduces their solubilization, leading to precipitation according to Nowotny.

Purification by 7% Caprylic acid method: In moderately acidic environments, except IgG, the addition of short-chain fatty acids like caprylic acid to the serum precipitates many serum proteins according to Mckinney and Parkinson.

Conjugation of polyclonal antibodies using the peridate process with (HRP) Horseradish peroxidase: Most widely used method of labeling IgG antibody molecules with HRP is the Peridate technique that exploits glycoprotein nature for the enzyme. To create an aldehyde group that

RESULTS

Estimation of the total protein content of *Toxoplasma* (SAG 1):
Total protein content for (SAG1) was 2.1 mg/ml as assessed by the Bradford method. Purification with DEAE Sephadex A-50 ion-exchange chromatography of the target antigen. Figure 1 shows the OD_{280} profile of antigen fractions obtained with DEAE-Sephadex A-50 ion-exchange chromatography following purification. On fraction number 5, the eluted antigen was described by a single peak with a maximum OD value identical for 1.7 (represented the fraction with the highest protein content). Figure 1

Fig 1: Elute profile for chromatography of *Toxoplasma* surface antigen grade I (SAG1) on Sephadex A-50 column

Purification by Sephadex G-50 column gel filtration chromatography. Partially purified antigen eluted by DEAE Sephadex A-50 ion-exchange chromatography with highest protein content (5&6&7&8&9) was further purified by DEAE Sephadex G-50 gel filtration column chromatography and the fraction number 9 represents the fraction with the highest protein content at OD 280 nm (1.4) (Figure 2).

Fig 2: Elute profile for chromatography of *Toxoplasma* surface antigen grade I (SAG1) on Sephadex G-50 column

Electrophoresis of sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE): Characterization of *Toxoplasma* antigen had been resolved by SDS PAGE (12.5%) underneath decreasing circumstance, colored by Coomassie blue. Bands of proteins were noticed at 25 and 30 KDa (Figure 3).

Fig 3: 12.5 % SDS PAGE for SAG1 pre and post purifications stains by Coomassie blue

Assessment of *Toxoplasma* surface antigen grade I reactivity by indirect ELISA is presented in Table 1.

<table>
<thead>
<tr>
<th>Serum Sample</th>
<th>OD Reading On 492 nm (M ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. gondii</td>
<td>1.360 ± 0.401</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>0.203 ± 0.122</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>0.121 ± 0.101</td>
</tr>
<tr>
<td>Healthy Control</td>
<td>0.105 ± 0.051</td>
</tr>
</tbody>
</table>

OD = optical density; M = mean and SD = standard deviation

Table 1: Reactivity of purified target antigen by indirect ELISA

Detection of pAb titers and testing the reactivity of anti- *Toxoplasma* IgG polyclonal antibodies against *Toxoplasma* SAG1 Rising levels of antibodies began one-week post first booster dosage. 3 days post 3rd booster dosage, the immune serum grants high titer within OD of 1.1 at 1/250 dilution against *Toxoplasma* antigen. Figure 4.
Fig 4: Reactivity by ELISA (indirect) of immunized rabbit anti-Toxoplasma IgG (pAb) against Toxoplasma SAG1

Determination of protein content after rabbit anti-Toxoplasma polyclonal antibody purification:
Total raw rabbit serum protein content containing anti-Toxoplasma antibodies was 8.0 mg/ml. Protein content was 5.0 mg/ml with 50 percent ammonium sulfate precipitation process, but content decreased to 2.7 mg/ml following a 7 percent caprylic acid precipitation procedure. Figure 5.

Fig 5: 12.5 percent SDS PAGE for anti-Toxoplasma IgG (pAb) pre and post purification (colored by Coomassie blue).

Anti-IgG pAb reactivity against Toxoplasma (SAG1) and other parasite antigens:
The reactivity of 1/500 diluted anti-Toxoplasma antibodies in PBS / T resulted in high Toxoplasma antigen reactivity. For Toxoplasma, the OD reading at 492 nm became 1.4 comparisons with 0.194 and 0.205 concerning E. Histolytica, As for G. lamblia. Conjugation of polyclonal antibodies of purified rabbit anti-Toxoplasma IgG with (HRP)
The content of the protein had been 2.7 mg/ml of polyclonal antibodies conjugated with HRP.
Determination of optimal coating concentrations of anti-Toxoplasma IgG polyclonal antibodies in sandwich ELISA:
Optimal coating concentrations for anti-Toxoplasma IgG pAb display within highest OD reading at 492 nm against different concentrations of Toxoplasma antigen after the subtraction of background was found to be 20 µg/ml in sandwich ELISA the OD value = 1.9. Figure 6

Fig 6: Determining the optimal concentration of the purified anti-Toxoplasma IgG polyclonal antibodies as a coating layer in ELISA sandwich

Determination of optimum rabbit anti-Toxoplasma IgG HRP conjugate concentration as antigen detecting antibodies by sandwich ELISA
The optimum concentration of the conjugate was 40 µg / ml which gave the highest OD (1.627±0.102) reading against Toxoplasma SAG1 after subtraction of the background and was chosen as a working dilution for subsequent assays. Figure 7.

Fig 7: Determination of the optimum concentration of conjugate antibodies in sandwich ELISA

Detection of Toxoplasma surface antigen grade I (SAG1) in the serum samples by sandwich ELISA.

Table 2
<table>
<thead>
<tr>
<th>OD reading at 492 nm</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.205</td>
</tr>
<tr>
<td>1.0</td>
<td>0.194</td>
</tr>
<tr>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>
were positive, while 22 monoclonal antibodies.

In summary, it is possible to generate polyclonal antibodies from the serum of immunized animals. Finally, pAb can be isolated only with high affinity. Compared with the cost of monoclonal antibody production, polyclonal antibodies are cheap to manufacture. Besides, it is possible to generate significant amounts of polyclonal antibodies from the serum of immunized animals. Finally, pAb with high affinity can be isolated only 2-3 months after the initial immunization. In the present work purification of the prepared polyclonal antibodies (pAb) was carried out by two different methods including 50% ammonium sulfate precipitation technique then followed by 7% caprylic acid purification technique. The use of these purification methods proved a highly purified IgG fraction as demonstrated by Mckinney & Parkinson. Detection of Toxoplasma SAG1 by sandwich ELISA in serum samples revealed that 43 out of 50 Toxoplasma cases (group I) were positive, while 7 cases were negative. In group II (patients with other parasitic infection) 8 patients gave positive results, no positive results were obtained in the healthy control group (group III).

DISCUSSION

Our goal for this research was intended to test the efficacy of Toxoplasma Surface Antigen grade I (SAG1) for the diagnosis of human Toxoplasma gondii in Egypt by Sandwich ELISA Technique. The surface antigen grade I (SAG1) was used in the present study because it is found in both tachyzoites and bradyzoites. In this current work, Toxoplasma gondii RH strain tachyzoites were used for the preparation of SAG1. Purification of SAG1 was performed with ion-exchange chromatography by Sephadex A-50, total protein content for raw antigen was 2.1 mg/ml, compared to 1.7 mg/ml post purification by DEAE-Sephadex A-50 ion-exchange chromatography, and it had been 1.3 mg/ml next purification by DEAE-Sephadex G-50. Toxoplasma surface antigen grade I (SAG1) has been utilized with incomplete and complete Freund’s adjuvants with rabbit immunization for the preparation of polyclonal anti-toxoplasma antibodies. Lipman et al.24 reported that choosing to prepare polyclonal antibodies to have many advantages over monoclonal antibodies. Compared with the cost of monoclonal antibody technology, polyclonal antibodies are cheap to manufacture. Besides, it is possible to generate significant amounts of polyclonal antibodies from the serum of immunized animals. Finally, pAb with high affinity can be isolated only 2-3 months after the initial immunization.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Positive cases</th>
<th>Negative cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>(n)</td>
</tr>
<tr>
<td>I Toxoplasma gondii (n=50)</td>
<td>43 (0.710±0.051)</td>
<td>7 (0.082±0.03)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Other parasites (n=24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giardia lamblia (n=14)</td>
<td>5 (0.450±0.031)</td>
<td>9 (0.032±0.031)</td>
</tr>
<tr>
<td>Entamoeba histolytica (n=10)</td>
<td>3 (0.370±0.0203)</td>
<td>7 (0.059±0.034)</td>
</tr>
<tr>
<td>III Healthy control (n=20)</td>
<td></td>
<td>20 (0.061±0.0356)</td>
</tr>
</tbody>
</table>

OD = optical density, M = mean, SD = standard deviation and n = number

Table 2: Detection of Toxoplasma surface antigen grade I (SAG1) in the serum samples using sandwich ELISA in the different studied groups

The level of Toxoplasma surface antigen grade I (SAG1) was calculated at 492 nm OD reading. The positivity cut-off point and the line of demarcation between negative and positive data had to be calculated first. When detecting Toxoplasma (SAG1) the cut-off values were 0.233. In serum, findings had been positive in 43 individuals (86 percent) of group I, whilst 7 individuals had been negative (14 percent). The sensitivity was 86% but, the specificity was found to be 81.81%.

CONCLUSION

Finally, from the obtained results, we can conclude that: To evaluate the different immunodiagnostic antigens detection assays selection of the proper antigen and its purification, followed by the production of its specific antibodies and purification were mandatory. The employment of rabbit anti-Toxoplasma gondii IgG-polycional antibodies in ELISA sandwich techniques for detecting SAG1 in human serum provides a sensitive and specific tool for immune-diagnosis of human toxoplasmosis.

REFERENCES

