

Al-Azhar International Medical Journal

Volume 1 | Issue 8

Article 1

8-1-2020

Evaluation of Preoperative Short Course Intensity Modulated Radiation Therapy in Treatment of Locally Advanced Rectal Carcinoma.

Ahmed Ezz Elregal Al-Azhar Faculty of medicine, ahmed_ezzelregal@azhar.edu.eg

Mohsen Zikry Clinical Oncology and Nuclear Medicine, Al-Azhar University, drmohsenzikry@gmail.com

Magdy Hussain General Surgery, Al-Azhar University, drmagdysalah@hotmail.com

Khaled El-Shahat *Clinical oncology depart., faculity of medicine, Al-Azhar University,* khaled_elshahat@azhar.edu.eg

Follow this and additional works at: https://aimj.researchcommons.org/journal

Part of the Medical Sciences Commons, Obstetrics and Gynecology Commons, and the Surgery Commons

How to Cite This Article

Ezz Elregal, Ahmed; Zikry, Mohsen; Hussain, Magdy; and El-Shahat, Khaled (2020) "Evaluation of Preoperative Short Course Intensity Modulated Radiation Therapy in Treatment of Locally Advanced Rectal Carcinoma.," *Al-Azhar International Medical Journal*: Vol. 1: Iss. 8, Article 1. DOI: https://doi.org/10.21608/aimj.2020.33474.1259

This Original Article is brought to you for free and open access by Al-Azhar International Medical Journal. It has been accepted for inclusion in Al-Azhar International Medical Journal by an authorized editor of Al-Azhar International Medical Journal. For more information, please contact dryasserhelmy@gmail.com.

Evaluation of Preoperative Short Course Intensity Modulated Radiation Therapy in Treatment of Locally Advanced Rectal Carcinoma

Clinical oncology

Ahmed EzzElregal^{1,*}MSc.;Mohsen Zikry¹MD;Magdy Salah Eldin²MD; Khalid Elshahat¹ PhD.

*Corresponding Author: Ahmed EzzElregalahmed_ezzelregal@az har.edu.eg

Received for publication June29, 2020; Accepted August25, 2020; Published onlineAugust 25, 2020.

Copyright 2020 The Authors published by Al-Azhar University, Faculty of Medicine, Cairo, Egypt. All rights reserved. This an open-access article distributed under the legal terms, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in anyway or used commercially.

doi: 10.21608/aimj.2020.33474.1259

¹Clinical oncology and nuclear medicine Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.

²General surgery Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.

ABSTRACT

Background:The optimal RT fractionation and the timing of surgery in resectable locally advanced rectal carcinoma is still debatable. Postponing the time of surgery after SCRT seems to be more beneficial in inducing down-staging, and reducing postoperative morbidity than SCRT with immediate surgery. IMRT is used successfully in many cancers helping to achieve better conformality.

Aim of work: The study aimed to evaluate the efficacy and tolerability of preoperative short-course IMRT with delayed surgery in patients with resectable locally advanced rectal carcinoma.

Patient and Methods: Patients with resectable locally advanced rectal carcinoma were treated with preoperative short-course IMRT (25 Gy over 5 fractions) followed by surgery after 4-8 weeks.

Results: 37 patients were included, down-staging was observed in 54.1% of them; patients with cN2 disease, radiological EMVI, and radiologically involved mesorectalfacia (MRF) tend to have a statistically significant less down-staging. severe early and late toxicity was reported in 5.4% and 8.1% of the patients respectively, and 37% had postoperative complications. 33 patients (94.6%) had curative surgery, 9% had pCR, and sphincter sparing was achieved in 28% of patients with low rectal tumors. Cumulative 2 years DFS and OS were 71% and 80% respectively.

Conclusion: SCRT with delayed surgery is a valid convenient, safe, and economically beneficial option in the treatment of locally advanced resectable rectal carcinoma, utilization of IMRT can help in reducing the dose to organs at risk. Further studies with a larger number of patients are mandatory to identify the most suitable patients for this approach.

Keywords:Resectable locally advanced rectal carcinoma; Shortcourse radiotherapy with delayed surger;IMRT.

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by the authors.

Authorship: All authors have a substantial contribution to the article.

INTRODUCTION

Neoadjuvant radiotherapy (RT) is frequently used in the treatment of locally advanced rectal carcinoma trying to achieve down-staging, sphincter preservation, as well as improvement in local control (LC) or even survival.^{1,2} There is still a debate on the optimal fractionation of RT, the timing of surgery, and the utilization of concurrent chemotherapy.³

Conventionally fractionated concurrent chemoradiotherapy (CCRT); (1.8–2 Gy \times 25–28 fractions) followed by surgery after 4-8 weeks is the most commonly used approach. ⁽⁴⁻⁷⁾This interval gives time for recovery from early toxicity and allows for down-staging, and achieving a pathological complete response (pCR).^{4,6,7,8,9,10}

However, it increases morbidity, and, in some trials, mortality. 11,12

Short-course radiotherapy (SCRT) with immediate surgery; 25 Gy over 5 fractions and surgery within the following week has been commonly used in Sweden and some other countries in Northern and Western Europe. ^{4,5,6,7}

Many trials have examined the most appropriate treatment schedule during the last 2 decades, Polish and Australian trials compared long-course CCRT with SCRT with immediate surgery,^{14,15}no significant differences were observed in postoperative complications, LC, late toxicity, or survival; nevertheless, a significantly lower acute radiation toxicity was observed with SCRT.

Traditionally, pre-operative RT has been delivered via three-dimensional conformal RT (3D-CRT) with three or four-field techniques for rectal cancer. More advanced techniques have been widely and successfully used for head-and-neck, prostate, and other cancers, such as intensity-modulated radiotherapy (IMRT),^{20,21}however, its potential clinical benefits remain debatable in rectal cancer.²²

The study aimed to evaluate the efficacy and tolerability of preoperative short-course IMRT with delayed surgery in patients with resectable locally advanced rectal carcinoma.

PATIENTSAND METHODS

The current work is a prospective study, including patients with a pathologically confirmed diagnosis of rectal carcinoma, in Clinical Oncology and Nuclear Medicine Department, El Hussein Hospital, Faculty of Medicine, Al-Azhar University during the period between June 2016 and August 2018. Approval of the ethical committee and written informed consent from every patient was obtained.

Eligibility criteria:

• Resectable locally advanced rectal adenocarcinoma; clinical stage II-III.

• Age more than 18 years and less than 80 of both genders.

• Performance Status \leq 2 ECOG scale.

- Ejection fraction > 55%.
- Adequate laboratory investigations.
- Medically fit for surgery.

• Patients without any primary treatment for their current disease (surgical, chemotherapy, or radiotherapy).

Ineligibility Criteria:

• Tumors extending above 15 cm from the anal verge.

- Pregnant women.
- Patients with synchronous tumors of the colon.

• Patients with a history of malignancy except for basal cell carcinoma.

- Patients presented with intestinal obstruction.
- Obese patients (> 120 kg).

• Severe skeletal deformity or any disease interfering with patient alignment and positioning for radiation therapy delivery.

All patients were subjected to clinical examination, colonoscopy, CT chest, abdomen and pelvis, Pelvic MRI with a series of laboratory investigations to assess the extent of disease and the presence of co-morbidity if any.

Staging of the disease was assessed according to the AJCC cancer staging system the 7th edition,²³ and the

ECOG scale was used to assess the performance status. 24

Tumors were classified regarding the distance of the lower extent of the primary tumor from anal verge into:

High: > 10 cm.

Middle: > 5 cm and ≤ 10 cm.

Low: ≤ 5 cm.

Mesorectalfacia (MRF) was considered involved when the distance of the tumor to the MRF of ≤ 1 mm.

Trial design:

In this prospective study, patients were planned to receive preoperative short course IMRT (25 Gy / 5 fractions in 5 consecutive days), then total mesorectal excision (TME) was planned 4-8 weeks after completion of neoadjuvant treatment. Target volumes and organs at risk were defined according to Radiationtherapy Oncology Group (RTOG) Consensus Panel Contouring Atlas.^{25,26}

An IMRT plan designed to cover 98 % of PTV with 95 % of the treatment dose while delivering 105% of the treatment dose to below 10%, and not delivering \geq 110% of the treatment dose to the PTV. We kept the maximal irradiation dose of the bladder under 24 Gy, bowel under 25 Gy, and femur heads under 20 Gy and kept the D50% of the above 3 organs at risk (OARs), irradiated \leq 20 Gy, \leq 13 Gy, and \leq 15 Gy respectively.

Plans were generated concerning delivery using only 6-MV photons via linear accelerator (Varian Medical System). PTV coverage had been given the highest priority, then minimization of dose to bowel while the intermediate priority for reducing the dose to the bladder, and femoral head/neck. Quality assurance (QA) was done before starting treatment for every case, verification with an electronic portal image device (EPID) was done before every fraction.

Acute and late radiotherapy adverse effects were graded according to RTOG/EORTC radiation toxicity grading.²⁷

Response evaluation:

Abdominopelvic CT, MRI pelvis and colonoscopy were done for all cases about one week before surgery. A tumor and/or nodal down-staging is considered when ycT and/or ycN is lower than cT and/or cN as defined by MRI, while clinical CR represented the absence of tumor by clinical examination, MRI, and colonoscopy.

Surgery:

TME (Total mesorectal excision) was planned 4-8 weeks after the completion of radiotherapy, and choice between low anterior resection and abdominoperineal resection and whether a temporary colostomy should be performed was left to the surgeon's discretion.

Surgery was considered adequate if achieving R0 resection (absence of macroscopic or microscopic

residual disease), while pCR was considered when no malignant cells are observed in the surgical specimen.

Post-operative complications were the reported complication occurring within one month from surgery.

Adjuvant treatment:

Following wound healing, patients received six months of adjuvant chemotherapy either FOLFOX-4 regimen or Degramont regimen, the selection was based on the stage of the disease and the expected patient tolerance.

Follow up:

After finishing adjuvant chemotherapy regimen patients had scheduled visits with investigations (CEA every 3 months, CT scan every 6 months, and colonoscopy in 1 year, then every 2–3 years if negative).

Disease-free survival (DFS) was the time from surgery to confirmed local recurrence, distant metastases, or death whichever occurred first, patients who neither relapsed nor died were censored at last assessment before a loss to follow-up.

Overall survival was the time from diagnosis till death, with survivors being censored at the time of the last follow-up. Living patients or patients lost to follow-up were censored on the last known alive date.

Statistical Methods:

Statistical presentation and analysis of this study were conducted via SPSS V22, using the mean, standard deviation, student t-test, chi-square, linear correlation coefficient, and analysis of variance [ANOVA] tests, survival analysis was done using Kaplan-Meier method, and the p-value was considered significant if ≤ 0.05 .

RESULTS

The current prospective study included 37 patients with a pathologically confirmed diagnosis of locally advanced resectable rectal adenocarcinoma fulfilling the eligibility criteria. Table (1) demonstrates the clinicopathologic features of the patients.

The whole study group received preoperative IMRT 25 Gy / 5 fractions over 5 consecutive days without any interruptions. PTV coverage, doses received by OAR, homogeneity index, and conformity index are shown in table (2)

Down-staging was observed in 20 patients (54.1%); it was noticed that 4 patients (10.8%) had a clinical CR, 16 patients (43.2%) had a partial response (PR), 15 patients (40.5%) had stable disease (SD) while 2 patients (5.4%) had disease progression (PD). Factors affecting clinical down-staging are shown in table (3).

It was noticed that patients with cN2 disease, radiological EMVI, and radiologically involved

mesorectalfacia (MRF) tend to have a poor clinical response with statistically significant *P-values*.

Only 35 patients (94.6%) submitted to surgery while one patient (2.7%) refused surgery as she achieved clinical CR and the other one (2.7%) was unfit for surgery.

The median period between radiotherapy and surgery was 7.3 weeks (range of 4.3-8 weeks), Curative surgery was done in 33 patients (94.3%) only; 17 of them (51.5%) had an anterior resection and the remaining 16 patients (48.5%) had APR. On the contrary, 2 patients had laparotomy only but the tumor was found to be irresectable. For patients having low rectal tumors at presentation (25 patients), sphincter sparing was successfully achieved in 7 of them (28%).

Histopathological examination and pathological TNM staging were done; histopathology evaluation results are shown in table (4).

All the 33 patients who submitted to curative surgery received adjuvant chemotherapy; 26 patients (78.8%) received the FOLFOX-4 regimen while 7 patients (21.2%) received the Degramont regimen, which was given to patients who experienced pCR and patients who were not expected to tolerate FOLFOX-4 regimen.

Most of the patients tolerated radiotherapy well, as no patients suffered from grade III or IV hematological toxicity, and no grade IV nonhematological toxicity was reported.

Only two patients (5.4%) had grade III early skin toxicity with no reported late skin effects, no patients suffered from GIII early bowel or bladder toxicity on the contrary GIII late bowel and bladder toxicity was reported in 5.4% and 2.7% respectively, table (5).

Surgical complications were reported in 37 % (13/35) of the operated patients, wound infection was the most frequently reported surgical complication and it occurred in 14.2% (5/35) of the patients; three of them (60%) were submitted to APR, the next most frequent complication was delayed wound healing and it was reported in 11.4% (4/35) of the patients; three of them (75%) also were submitted to APR, table (6).

Only 33 patients who submitted to R0 resection were evaluated for PFS and OS; The median follow up period was 23 months, by the end of this study, 6 patients (18.2%) died and 27 patients (81.8%) were still alive.

9% of the patients (3/33) suffered from a locoregional recurrence, 21.2% (7/33) had distant metastasis while 6% (2/33) had simultaneous systemic and locoregional recurrences.

The liver was the common partner in all cases with distant metastasis as it was reported in all the seven patients (100%) with distant metastasis, then lung, para-aortic lymph nodes and bone with 2 cases

Age	Range	22-72				
	Mean ±SD	14.956				
		N (37)	%			
Age group	<40 Years	10	27.00			
Age group	≥40 Years	27	73.00			
Gender	Male	20	54.05			
Gender	Female	17	45.95			
Family history	positive	3	8.11			
Tuning history	negative	34	91.89			
_	HTN	7	18.92			
Comorbidity	DM	7	18.92			
	HCV positive	3	8.11			
	COPD	2	5.41			
Smoking	Smokers	7	18.92			
~yy	Non smokers	30	81.08			
Performance Status	0	3	8.11			
	I	24	64.86			
	II	10	27.03			
	Bleeding per rectum	34	91.89			
Clinical presentation	Constipation	18	48.65			
	Pelvic pain	18	48.65			
	Change of bowel habits	10	27.03			
	Loss of weight	7	18.92			
Initial Tumor marker	High	34	91.89			
	Normal	3	8.11			
	Low	25	67.57			
Tumor Site	Middle	8	21.62			
	High	4	10.81			
	Adenocarcinoma	30	81.08			
Histopathology	Mucinous	4	10.81			
Instopathology	Signet ring	2	5.41			
	Undifferentiated carcinoma	1	2.70			
	Ι	3	8.11			
Grade	II	22	59.46			
Orauc	III	11	29.73			
	IV	1	2.70			
Pretreatment clinical tumor	2	9	24.32			
staging(cT)	3	26	70.27			
Sunging (C I)	4	2	5.41			
	0	4	10.81			
Pretreatment clinical nodal	1a	6	16.22			
staging(cN)	1b	16	43.24			
Sunging (CL1)	2a	4	10.81			
	2b	7	18.92			
	IIA	4	10.81			
Pretreatment clinical stage group	IIIA	8	21.62			
	IIIB	19	51.35			
Radiological Extramural vascular	Yes	7	18.92			
invasion (EMVI)	No	30	81.08			
Radiological mesorectal fascia	Positive	6	16.22			
(MRF) involvement	Negative	31	83.78			

(28.6%) for each of them and the lowest was the skin which was present only in one patient (14.3%).

Table 1: The clinicopathologic characteristics of the study group.

Parameter		Value
Paramo	eter	Mean ±SD
PTV vol	ume	1588 ± 277 cc
PTV mean	n dose	25.45 ± 0.19
Dmax (Gy)	26.57 ± 0.29
Dmin (Gy)		20.6 ± 1.47
D98%	6	$24.49 \pm 0.22 \text{ Gy}$
D50%		$25.49 \pm 0.21 \text{ Gy}$
D2%	, D	26 ± 0.23 Gy
HI		0.059 ± 0.01
CI		0.98 ± 0.04
Bowel vo		947.46 ± 320.41 cc
Bowel mea		11.31 ± 1.79 Gy
Bowel V25 Gy	Volume (cc)	15.50 ± 25.22
Dowel V25 Gy	Percentage (%)	$1.450\% \pm 2.732$
Bowel V22.5 Gy	Volume (cc)	66.98 ± 62.25
Dowei 722.5 Gy	Percentage %	$6.890\% \pm 5.722$
Bowel V20 Gy	Volume (cc)	118.64 ± 82.11
Bower V20 Gy	Percentage %	$12.259\% \pm 6.937$
Bowel V17 Gy	Volume (cc)	193.80 ± 115.40
bowei v17 Gy	Percentage %	$19.870\% \pm 8.733$
Bowel V15 Gy	Volume (cc)	263.24 ± 143.32
Bower v15 Gy	Percentage %	$27.373\% \pm 10.916$
Bowel V10 Gy	Volume (cc)	508.70 ± 180.59
Bower vio Gy	Percentage %	$54.054\% \pm 11.352$
Bernel W5 Cr	Volume (cc)	714.34 ± 234.74
Bowel V5 Gy	Percentage %	$76.173\% \pm 8.600$
Urinary bladder volume		278.47 ± 232.84 cc
Urinary bladder mean dos	se	$20.5 \pm 2.4 \text{ Gy}$
Rt. Femoral head mean do	ose	10.67 ± 1 Gy
Lt. Femoral head mean do	ose	$10.55 \pm 1.14 \text{ Gy}$
Bone marrow volume		$1374 \pm 178.2 \text{ cc}$
Bone marrow mean dose		13.63 ± 1.6Gy

 Table 2: Radiotherapy parameters.

		Clinical down staging Yes No					T-Test		
							1-	Test	
		Mean ± SD		Mean ± SD			t	P-value	
Age		50.	$450 \pm 13.$	694	48.00	00 ± 1	6.647	0.491	0.626
Duration of Symptoms (Months)		3.	450 ± 2.52	23	4.38	32 ± 3	3.257	-0.981	0.333
Period from diagnosis to RT (Days)		11	$.200 \pm 3.2$	286	13.4	12 ± 0	6.847	-1.283	0.208
Period from radiotherapy to surgery (Weeks)		7.	$.078 \pm 1.0$	48	6.92	29 ± 0).905	0.447	0.658
			Clini	ical d	own stag	ging		Chi	3
			Yes		No]	Fotal	Cm-	Square
		Ν	%	Ν	%	Ν	%	X ²	P-value
A go group	<40 Years	5	25.00	5	29.41	10	27.03	0.091	0.763
Age group	≥40 Years	15	75.00	12	70.59	27	72.97	0.091	0.703
C	Male	11	55.00	9	52.94	20	54.05	0.016	0.000
Sex	Female	9	45.00	8	47.06	17	45.95	0.016	0.900
Fomily history	Yes	0	0.00	3	17.65	3	8.11	1.837	0.175
Family history	No	20	100.00	14	82.35	34	91.89	1.037	0.173
Smaking	Yes	4	20.00	3	17.65	7	18.92	0.022	0.955
Smoking	No	16	80.00	14	82.35	30	81.08	0.033	0.855
	0	2	10.00	1	5.88	3	8.11		0.559
Performance Status	Ι	14	70.00	10	58.82	24	64.86	1.164	
	II	4	20.00	6	35.29	10	27.03		
T. 141-170	High	19	95.00	15	88.24	34	91.89	0.564	0.452
Initial Tumor marker	Normal	1	5.00	2	11.76	3	8.11		
	High	1	25.00	3	75.00	4	10.81	2.954	0.184
Tumor site	middle	3	37.50	5	62.50	8	21.62		
	Low	16	64	9	36	25	67.57		
	Adeno	18	90.00	12	70.59	30	81.08		
III stored to be see	Mucinous	0	0.00	4	23.53	4	10.81	5 006	0.112
Histopathology	Signet ring	1	5.00	1	5.88	2	5.41	5.996	0.112
	Undifferentiated	1	5.00	0	0.00	1	2.70		
	Ι	2	10.00	1	5.88	3	8.11		
Grade	II	12	60.00	10	58.82	22	59.46	1.372	0.712
Grade	III	5	25.00	6	35.29	11	29.73	1.372	0.712
	IV	1	5.00	0	0.00	1	2.70		
	T2	3	15.00	6	35.29	9	24.32		
Pretreatment clinical tumor staging(cT)	T3	17	85.00	9	52.94	26	70.27	5.253	0.072
	T4	0	0.00	2	11.76	2	5.41		
Pretreatment clinical nodal staging(cN)	N0-1	17	85.00	9	52.94	26	70.27	4.521	0.033*
retreatment ennear nouar stagnig(en)	N2	3	15.00	8	47.06	11	29.73	4.521	0.055
	IIA	4	20.00	0	0.00	4	10.81		
Pretreatment clinical stage group	IIIA	4	20.00	4	23.53	8	21.62	6.943	0.074
Pretreatment chincal stage group	IIIB	11	55.00	8	47.06	19	51.35	0.745	0.074
	IIIC	1	5.00	5	29.41	6	16.22		
Radiological Extramural vascular invasion (EMVI)	Yes	1	5.00	6	35.29	7	18.92	5.498	0.019*
Kaulological Extrainural vascular invasion (ENIVI)	No	19	95.00	11	64.71	30	81.08	5.490	0.019
	Positive	1	5.00	5	29.41	6	16.22	4.031	
Radiological mesorectal fascia (MRF) involvement									0.045*
	Negative	19	95.00	12	70.59	31	83.78		

Table 3: Factors affecting clinical down staging:

		N (35)	%
	Adenocarcinoma	28	80
III's diagonal diagonalism	Mucinous	4	11.4
Histopathology	Signet ring	2	5.7
	Undifferentiated carcinoma	1	2.9
	I	3	8.6
Grade	II	21	60
Grade	III	10	28.6
	IV	1	2.9
	TO	3	8.57
	T1	1	2.86
Pathological primary tumor assessment (ypT)	T2	15	42.86
	Т3	14	40.00
	T4	2	5.71
	No	10	28.57
	1a	6	17.14
Pathological nodal assessment (ypN)	1b	8	22.86
	2a	3	8.57
	2b	8	22.86
	pCR	3	8.57
	I	5	14.29
Pathological stage	IIA	2	5.71
i athological stage	IIIA	9	25.71
	IIIB	8	22.86
	IIIC	8	22.86
Pathological perineural invasion (PNI)	Yes	5	14.3
	No	30	85.7
Pathological lymphovascular invasion (LVI)	Yes	4	11.4
	No	31	88.6
	Complete necrosis	3	8.57
Presence of tumor necrosis	Partial necrosis	23	65.71
	No Necrosis	9	25.71

Table 4: Histopathology evaluation results.

Toxicity		GI	GII	GШ	G IV	G V			
Hematological									
Anemia		1(2.7%)	2(5.4%)	0	0	0			
Neutropeni	a	3(8.1%)	1(2.7%)	0	0	0			
Thrombocytop	oenia	0	0	0	0	0			
		No	n-hematological						
Skin	Early	19(51.35%)	6(16.22%)	2(5.4%)	0	0			
JKIII	Late	0	0	0	0	0			
Bowel	Early	13(35.14%)	3(8.11%)	0	0	0			
Dower	Late	4(10.81%)	0	2(5.4%)	0	0			
Bladder	Early	14(37.84%)	1(2.70%)	0	0	0			
Diaduei	Late	2(5.41%)	1(2.70%)	1(2.7%)	0	0			

5		2
Surgical complications	Number	Percentage
Delayed wound healing	4	11.4 %
wound infection	5	14.2 %
Urinary bladder injury	1	2.86 %
Fistula	1	2.86 %
DVT	1	2.86 %
Abdominal dehiscence	1	2.86 %

Table 5: Neoadjuvant RT related toxicity.

Table 6: Surgical complications.

The median DFS and OS have not been reached. The cumulative 1 year and 2 years DFS were 88 % and 71 % respectively, while the cumulative 1 year and 2 years OS were 90.1% and 80 % respectively, Figures (1&2).

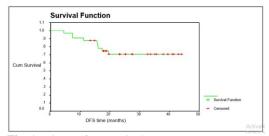


Fig. 1: Disease free survival.

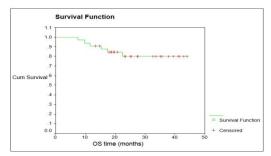


Fig. 2: Overall survival.

Factors affecting DFS and overall survival were studied, (Table 7,8). It was found that patients younger than 40 years old and patients with ypN2 stage have significantly worse PFS but there was no significant impact on OS, on the other hand, other prognostic variables Showed no statistically significant effect on either PFS or OS.

DISCUSSION

The optimal RT fractionation, concomitant chemotherapy, and the proper timing of surgery in patients suffering from locally advanced resectable rectal carcinoma has been much debated.

The general idea of the current prospective study was to explore the safety of SCRT with delayed surgery and its efficacy to induce Down-staging, pCR, sphincter preservation, and the impact of utilizing IMRT in reducing the dose to OAR.

SCRT followed by immediate surgery, doesn't induce down-staging, ⁽²⁸⁾but a longer period between RT and surgery leads to a higher down-staging rate (44.2% vs. 13%).¹⁹Moreover, a Swedish

retrospective study reported that 74 % of the patients had tumor regression on MRI after a median of 4 weeks after the completion of RT but it was noticed that only 55.4 % of the patients had MRI reassessment.²⁹

In our study the rate of down-staging was 54.1%, It was noticed that patients with cN2 disease, radiological EMVI, and radiological involved mesorectalfacia (MRF) tend to have a statistically significant worse clinical down-staging.

A Korean study showed a higher conformal radiation dose to the target and significantly reduced the dose to OAR when using short course IMRT compared to the four-box field (3D-CRT),³⁰ our study results were consistent regarding PTV coverage and femoral head mean dose but Bowel and bladder mean doses were higher than those reported in the IMRT arm but still better than the conformal radiotherapy results, the difference may be attributed to the utilization of tomotherapy in the Korean study.

In our study, severe early and late toxicity were reported in 5.4% and 8.1% of the patients respectively, Polish trial reported that the incidence of severe early and late adverse effects in SCRT arm was 3.2% and 10.1% respectively.¹⁴

Stockholm III trial reportedsevere acute toxicity in <1% of the patients receiving SCRT with immediate surgery group, 4.2 % of the patients in SCRT with delayed surgery group and 5 % in the CCRT group, and it was thought that acute radiation toxicity was masked by surgical complications in the SCRT with immediate surgery group. ¹⁷

A retrospective study including patients who received SCRT then delayed surgery, Severe radiation-induced toxicity was reported in 5.4 % of them.²⁹

Polish trial demonstrated that the rates of postoperative complications for the SCRT with immediate surgery group and the long course CCRT group were 27% vs 21%, respectively but it was noticed that only 39 % of the patients had APR.³¹

In an older Dutch trial, it was noticed that patients who had an abdominoperineal resection, after preoperative RT had more perineal complications than those assigned to surgery alone 26 % vs. 18 %.³²

Stockholm III trial showed a significantly lower incidence of postoperative complications in the SCRT followed by delayed surgery vs. SCRT with immediate surgery, (41 % vs. 53%).¹⁷

In our study, postoperative complications were reported in 37 % of the patients and it was obvious that most of them had APR.

It is suggested that patients with a pCR might have better DFS and OS.¹⁰ In our study, we reported a pCR rate of 9%, and it was consistent with the results of a retrospective study held in the Netherlands that found a significantly lower pCR rate in patients treated with SCRT with delayed surgery compared to long course CCRT (9.3% vs. 17.5% respectively).¹⁸

Stockholm III trial reported a pCR rate of 11.8% in patients receiving SCRT with delayed surgery.¹⁶

			DFS			T-Test o	T-Test or ANOVA	
		N	Mean	±	SD	T or F	P-value	
A go group	<40 Years	9	18.167	±	10.940	-2.055	0.048*	
Age group	≥40 Years	24	26.929	±	10.898	-2.033	0.048*	
Gender	Male	18	22.022	±	11.260	-1.405	0.170	
Gender	Female	15	27.560	±	11.293	-1.405	0.170	
Family history	Yes	2	18.500	±	19.940	-0.765	0.450	
i anny mstory	No	31	24.929	±	11.130	0.705	0.150	
	0	3	30.867	±	11.418	-		
Performance Status	I	22	25.477	±	10.120	1.306	0.286	
	П	8	19.588	±	14.366			
Smoking	Yes	5	19.740	±	9.215	-1.019	0.316	
6	No High	28 30	25.396 23.993	±	<u>11.732</u> 11.235			
Initial Tumor marker	Normal	30	30.000	±	11.235	-0.863	0.395	
	Low	22	27.759	±	10.421			
Site	Middle	7	31.843	± ±	11.629	2.363	0.122	
Site	High	4	32.550	±	7.188	2.303	0.122	
	Adenocarcinoma	28	26.268		10.584			
	Mucinous	3	15.833		17.270	1		
Histopathology	Signet ring	1	15.800		0.000	1.524	0.229	
	Undifferentiated	1	11.000		0.000	1		
	I-II	24	26.817	±	10.439			
Grade	III-IV	9	18.467	±	12.394	1.946	0.061	
	T2	9	29.644	±	12.051			
Pretreatment clinical tumor staging(cT)	T3	23	22.761		11.072	1.293	0.289	
	T4	1	19.500	±	0.000			
	N0-1	24	26.558	±	10.744	1.703		
Pretreatment clinical nodal staging(cN)							0.099	
	N2	9	19.156	±	12.134			
	IIA	3	29.767	±	13.210	1.600		
Pretreatment clinical stage group	IIIA	8	30.050	±	11.851		0.211	
	IIIB	18	22.867	±	10.058			
	IIIC	4	17.125	±	13.473			
Radiological Extramural vascular invasion (EMVI)	Yes	5	21.260	±	8.968	-2.150	0.289	
	No	28	26.732	±	10.821			
Radiological mesorectal fascia (MRF) involvement	Positive	4	19.600	±	11.867	-0.919	0.365	
· · · · · · · · · · · · · · · · · · ·	Negative Yes	29 15	25.221 22.840	±	11.430 10.768			
Overall clinical down staging	No	15	22.840	±		0.228	0.722	
Overall clinical down staging	CR	3	26.295	±	13.141 5.514	0.328	0.723	
	ТО	3	24.207	± ±	5.514			
	T1	1	23.200	±	0.000	-		
Pathological tumor assessment (pT)	T2	15	23.200	±	11.634	0.543	0.706	
ratiological tunior assessment (pr)	T3	13	21.446	±	12.695	0.545	0.700	
	T4	1	19.500		0.000	1		
	N0-1	24	27.350		10.631			
Pathological nodal assessment (pN)	N2	9	17.044	±	10.588	2.483	0.019*	
	pCR	3	24.267	±	5.514			
	I	5	24.580		14.617	1		
	IIA	2	29.100	±	14.566	1.0.54	0.000	
Pathological stage	IIIA	9	29.733	±	10.027	1.264	0.308	
	IIIB	8	24.550	±	10.980	1		
	IIIC	6	15.317	±	11.142	1		
Dethological paring (DNI)	Yes	5	19.740	±	9.215	1.010	0.216	
Pathological perineural invasion (PNI)	No	28	25.396	±	11.732	-1.019	0.316	
Dathelegical lymphone i i (I VI)	Yes	4	22.260	±	9.948	2 009	0.221	
Pathological lymphovascular invasion(LVI)	No	29	26.732	±	10.821	-2.008	0.231	
	Complete necrosis	3	24.267	±	5.514			
Presence of tumor necrosis	Partial necrosis	23	25.313	±	11.174	0.200	0.820	
	No Necrosis	7	22.114	±	14.882			

Table 7:Disease free survival and its relation to the prognostic factors.

			OS		T-Test o	r ANOVA
		Ν	Mean ±	SD	T or F	P-value
	<40 Years	9	20.378 ±	9.317		
Age group	≥40 Years	24	27.692 ±	10.309	-1.860	0.072
	Male	18	23.211 ±	10.158	1 500	0.10-
Gender	Female	15	28.680 ±	10.317	-1.529	0.136
	Yes	2	22.100 ±	14.849		
Family history	No	31	25.929 ±	10.394	-0.497	0.623
	0	3	$30.867 \pm$	11.418		
Performance Status	I	22	26.459 ±	9.284	1.025	0.371
i chroninance Status	II	8	$21.663 \pm$	13.067	1.025	0.571
	Yes	5	$20.860 \pm$	9.245		
Smoking	No	28	$26.561 \pm$	10.557	-1.129	0.267
	High	30	$25.267 \pm$	10.164		
Initial Tumor marker	Normal	3	$30.000 \pm$	14.703	-0.743	0.463
	Low	22		9.484		
Site	Middle	7	$27.141 \pm 32.957 \pm$	9.484	4.719	0.117
Site					4./19	0.117
	High	4 28	$32.550 \pm 27.080 \pm$	7.188		
	Adenocarcinoma		27.089 ±	9.996		
Histopathology	Mucinous	3	18.967 ±	14.526	1.144	0.348
	Signet ring	1	17.400 ±	0.000		
	Undifferentiated	1	15.200 ±	0.000		
Grade	I-II	24	$26.067 \pm$	11.844	1.276	0.301
	III-IV	9	$20.188 \pm$	11.446	1.270	0.501
	T2	9	30.511 ±	11.163		
Pretreatment clinical tumor staging(cT)	T3	23	24.083 ±	9.967	1.447	0.251
	T4	1	19.500 ±	0.000		
	N0-1	24	27.121 ±	10.330		
Pretreatment clinical nodal staging(cN)	N2	9	$21.900 \pm$	10.347	1.293	0.206
	IIA	3	29.767 ±	13.210		
	IIIA	8	$30.050 \pm$	11.851	1.040	0.389
Pretreatment clinical stage group	IIIA	18	$30.030 \pm 24.172 \pm$	9.330		
		4				
	IIIC	5	$20.800 \pm$	10.615		
Radiological Extramural vascular invasion (EMVI)	Yes		22.840 ±	6.159	-2.176	0.146
	No	28	27.279 ±	10.319		
Radiological mesorectal fascia (MRF) involvement	Positive	4	20.550 ±	10.961	-1.053	0.300
	Negative	29	26.407 ±	10.365		
A H H H H H	Yes	15	23.227 ±	10.418	0.0.40	0.001
Overall clinical down staging	No	15	28.453 ±	11.011	0.969	0.391
	Clinical CR	3	24.267 ±	5.514		
	TO	3	24.267 ±	5.514		
	<u>T1</u>	1	23.200 ±	0.000		e 1
Pathological primary tumor assessment (ypT)	T2	15	28.327 ±	11.102	0.445	0.775
	T3	13	23.662 ±	11.159		
	T4	1	19.500 ±	0.000		
Pathological nodal assessment (ypN)	N0-1	24	$27.650 \pm$	10.397	1.817	0.079
i univiogical notal assessment (ypi)	N2	9	20.489 ±	9.132	1.01/	0.077
	pCR	3	24.267 ±	5.514		
	Ι	5	24.580 ±	14.617		
Pathological stage	IIA	2	29.100 ±	14.566	0.804	0.557
r athological stage	IIIA	9	29.911 ±	9.760	0.804	0.337
	IIIB	8	26.225 ±	9.981		
	IIIC	6	19.183 ±	9.487		
	Yes	5	16.840 ±	6.159	1 100	0.247
Pathological perineural invasion (PNI)	No	28	20.860 ±	9.245	-1.129	0.267
	Yes	4	$26.561 \pm$	10.557		
Pathological lymphovascular invasion(LVI)	No	29	27.279 ±	10.319	-2.048	0.137
	Partial necrosis	23	$26.048 \pm$	10.520		
Presence of tumor necrosis	No Necrosis	7	$25.157 \pm$	12.798	0.047	0.954
resence or cullor licerosis	Complete necrosis	3	$23.137 \pm 24.267 \pm$	5.514	0.047	0.754
	Complete necrosis	5	24.207 ±	5.514		

Table 8: Overall survival and its relation to the prognostic factors.

Bujko, K., et al., (2004) compared sphincter preservation rates between SCRT with immediate surgery and CCRT with delayed surgery and reported no significant difference,³³ also there was no difference between SCRT with immediate or delayed surgery.¹⁹ In our study, the sphincter preservation rate was 52.5%, but for patients who had low rectal tumors, the rate was 28%. Although polish trial, reported a higher sphincter preservation rate of 61%, this can be explained if we know that, they were selecting patients with no clinical evidence of sphincter involvement.³³

Just 34 years ago, before the era of TME, postoperative RT, with anterior and posterior parallel opposed fields reduced the local recurrence (LR) from 25% to 16%,³⁴ with TME alone the (LR) rate declined to 11% and when preoperative CCRT was added further decline to 4.6% was achieved, patients with low rectal tumors, those with advanced tumor stage, and patients submitted to APR were found to have the highest LR rates.³⁵

Dutch trial reported a two years LR rate of 2.4 % in patients treated with SCRT with immediate surgery, but most of the study patients had a low stage (patients with stage < III: 59%) and only 27% of the patients had low rectal tumors.³²

The Swedish rectal cancer trial eventually reported that the LR rate was 9% after short-course RT with immediate surgery.³⁶

In our study, the rate of LR was 9%, but it was noticed that 66.6% of the study group had low rectal tumors, and 69.7 % of them had stage III disease.

In our study, the median DFS and OS have not been reached, and the cumulative DFS at 1 year and 2 years were 88 % and 71 % respectively, while the cumulative OS at 1 year and 2 years were 90.1% and 80 % respectively.

Dutch trial showed an insignificant overall survival difference at two years between pre-operative SCRT with immediate surgery and surgery alone (82% vs. 81.8%).³²

Bujko, K., et al., (2004) compared neoadjuvant CCRT with delayed surgery to SCRT with immediate surgery, and showed no significant difference in survival, the cumulative 4-year overall survival was 66.2% in the CCRT group vs. 67.2% in the short-course group, and disease-free survival was 55.6%. Vs. 58.4% respectively.¹⁴ A Randomized clinical trial compared SCRT with either immediate or delayed surgery, the 5-year survival was 63% vs. 73% but the difference was statistically insignificant, while a statistically significant increase in 5-year survival was noticed in patients who had down-staging after radiotherapy compared to patients who had no response to RT (90% vs. 60% respectively).¹⁹

CONCLUSION

Short-course radiotherapy with delayed surgery is a valid convenient, safe, and economically beneficial option in the management of locally advanced resectable rectal carcinoma, utilization of IMRT can help in reducing the dose to organs at risk. However, more studies with a larger number of patients are mandatory to identify the category of patients who may have the best benefit of this approach and to confirm the potential clinical benefit of using IMRT.

REFERENCES

- Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J *ClinOncol.* 2012;30(16):1926-33.
- Song JH, Jeong JU, Lee JH, et al. Preoperative chemoradiotherapy versus postoperative chemoradiotherapy for stage II-III resectable rectal cancer: a meta-analysis of randomized controlled trials. *RadiatOncol J.* 2017;35(3):198-207.
- 3. Jin F, Luo H, Zhou J, et al. Dose-time fractionation schedules of preoperative radiotherapy and timing to surgery for rectal cancer. *TherAdv Med Oncol.* 2020;12.
- 4. Braendengen M, Tveit KM, Berglund A, et al. Randomized phase III study comparing preoperative radiotherapy with chemoradiotherapy in nonresectable rectal cancer. *J ClinOncol.* 2008;26(22):3687-94.
- Sebag-Montefiore D, Stephens RJ, Steele R, et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. *Lancet*. 2009;373(9666):811-20.
- Gérard JP, Conroy T, Bonnetain F, et al. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J *ClinOncol.* 2006;24(28):4620-5.
- Bosset JF, Collette L, Calais G, et al. Chemotherapy with preoperative radiotherapy in rectal cancer [published correction appears in N Engl J Med. 2007 Aug 16;357(7):728]. N Engl J Med. 2006;355(11):1114-23.
- 8. Hall MD, Schultheiss TE, Smith DD, et al. Effect of increasing radiation dose on pathologic complete response in rectal cancer patients treated with neoadjuvantchemoradiation therapy. *ActaOncol.* 2016;55(12):1392-9.
- 9. Maas M, Nelemans PJ, Valentini V, et al. Longterm outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. *Lancet Oncol.* 2010;11(9):835-44.
- Abdel-Rahman O, Kumar A, Kennecke HF, et al. Impact of Duration of Neoadjuvant Radiation on Rectal Cancer Survival: A Real World Multicenter Retrospective Cohort Study. *Clin Colorectal Cancer*. 2018;17(1):e21-8.
- 11. David Sebag-Montefiore, Richard J Stephens, Robert Steele, et al.Randomized study on

preoperative radiotherapy in rectal carcinoma. Stockholm Colorectal Cancer Study Group. *Ann SurgOncol.* 1996;3(5):423-30.

- Goldberg PA, Nicholls RJ, Porter NH, et al. Long-term results of a randomised trial of shortcourse low-dose adjuvant pre-operative radiotherapy for rectal cancer: reduction in local treatment failure. *Eur J Cancer*. 1994;30A(11):1602-6.
- Pettersson D, Cedermark B, Holm T, et al. Interim analysis of the Stockholm III trial of preoperative radiotherapy regimens for rectal cancer. *Br J Surg.* 2010;97(4):580-7.
- 14. Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al. Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg. 2006;93(10):1215-23.
- 15. Ansari N, Solomon MJ, Fisher RJ, et al. Acute Adverse Events and Postoperative Complications in a Randomized Trial of Preoperative Shortcourse Radiotherapy Versus Long-course Chemoradiotherapy for T3 Adenocarcinoma of the Rectum: Trans-Tasman Radiation Oncology Group Trial (TROG 01.04). Ann Surg. 2017;265(5):882-8.
- Pettersson D, Lörinc E, Holm T, et al. Tumour regression in the randomized Stockholm III Trial of radiotherapy regimens for rectal cancer. *Br J Surg.* 2015;102(8):972-8.

doi:10.1002/bjs.9811.

- 17. Erlandsson J, Holm T, Pettersson D, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. *Lancet Oncol.* 2017;18(3):336-46.
- 18. Rombouts AJM, Hugen N, Verhoeven RHA, et al. Tumor response after long interval comparing 5x5Gy radiation therapy with chemoradiation therapy in rectal cancer patients. *Eur J SurgOncol.* 2018;44(7):1018-24.
- Pach R, Kulig J, Richter P, et al. Randomized clinical trial on preoperative radiotherapy 25 Gy in rectal cancer--treatment results at 5-year follow-up [published correction appears in Langenbecks Arch Surg. 2019 Sep;404(Suppl 1):19-20]. Langenbecks Arch Surg. 2012;397(5):801-7.
- Jacobs BL, Zhang Y, Schroeck FR, et al. Use of advanced treatment technologies among men at low risk of dying from prostate cancer. *JAMA*. 2013;309(24):2587-95.
- 21. Chun SG, Hu C, Choy H, et al. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J ClinOncol. 2017;35(1):56-62.

- 22. Yang Y, Feng L, Wang Y, et al. A Dosimetric Analysis of Preoperative Intensity-modulated and Image-guided Radiation Therapy with and without Simultaneous Integrated Boost for Locally Advanced Rectal Cancer. *Technol Cancer Res Treat*. 2015;14(5):557-63.
- 23. Edge SB and Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann SurgOncol. 2010;17(6):1471-4.
- 24. Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J ClinOncol. 1982; 5(6): 649-56.
- 25. Myerson RJ, Garofalo MC, El Naqa I, et al. Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. *Int J RadiatOncolBiol Phys.* 2009;74(3):824-30.
- 26. Gay HA, Barthold HJ, O'Meara E, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas [published correction appears in Int J RadiatOncolBiol Phys. 2012 Sep 1;84(1):7]. Int J RadiatOncolBiol Phys. 2012;83(3):e353-62.
- 27. Cox JD, Stetz J andPajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). *Int J RadiatOncolBiol Phys.* 1995;31(5):1341-6.
- Marijnen CA, Nagtegaal ID, Klein Kranenbarg E, et al. No downstaging after short-term preoperative radiotherapy in rectal cancer patients. *J ClinOncol.* 2001;19(7):1976-84.
- 29. Pettersson D, Holm T, Iversen H, et al. Preoperative short-course radiotherapy with delayed surgery in primary rectal cancer. Br J Surg. 2012;99(4):577-83.
- 30. Yu M, Jang HS, Jeon DM, et al. Dosimetric evaluation of Tomotherapy and four-box field conformal radiotherapy in locally advanced rectal cancer. *RadiatOncol J.* 2013;31(4):252-9.
- 31. Bujko K, Nowacki MP, Kepka L, et al. Postoperative complications in patients irradiated pre-operatively for rectal cancer: report of a randomised trial comparing short-term radiotherapy vschemoradiation. *Colorectal Dis.* 2005;7(4):410-6
- 32. Kapiteijn E, Marijnen CA, Nagtegaal ID, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. *N Engl J Med.* 2001;345(9):638-646.
- 33. Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al. Sphincter preservation following preoperative radiotherapy for rectal cancer: report of a randomised trial comparing short-term radiotherapy vs. conventionally fractionated radiochemotherapy. *RadiotherOncol.* 2004;72(1):15-24.

- 34. Gastrointestinal Tumor Study Group. Prolongation of the disease-free interval in surgically treated rectal carcinoma. *N Engl J Med.* 1985;312(23):1465-72.
- 35. Kusters M, Marijnen CA, van de Velde CJ, et al. Patterns of local recurrence in rectal cancer; a

study of the Dutch TME trial. *Eur J SurgOncol.* 2010;36(5):470-6.

36. Folkesson J, Birgisson H, Pahlman L, et al. Swedish Rectal Cancer Trial: long lasting benefits from radiotherapy on survival and local recurrence rate. *J ClinOncol.* 2005;23(24):5644-50.